
Response to Request for Information:

Open-Source So�ware Security:

Areas of Long-Term Focus and Prioritization

88 Fed. Reg. 54315 (Aug 10, 2023)

Docket No. ONCD-2023-0002

November 8, 2023

Google applauds the Biden Administration’s continued and focused e�ort on addressing the
challenges of open source security. As a producer and consumer of open source so�ware, as well
as a contributor to key so�ware security initiatives, we welcome the opportunity to provide
comments in response to The O�ce of the National Cyber Director’s (ONCD) and other partner
agencies’ Request for Information1 on areas of long-term focus and prioritization on open-source
so�ware security.

Google is a leader both in contributing to open source projects and to the security of open source.
A vibrant and secure open source community, which is at the core of Google’s infrastructure,
processes, and culture, is a key di�erentiator in technology innovation. We believe that by being
open and freely available, open source so�ware (OSS) enables collaboration and the development
of technology, solving real-world problems.

Similarly, open source so�ware is a critical part of the digital infrastructure that has helped propel
the U.S. so�ware sector to its global leadership position. As one of the largest consumers of open
source, the US federal government occupies a unique position of leverage to improve the security
of OSS ecosystems. By working to develop, support, and adopt tools and resources that can be
used by all so�ware professionals to secure their use of OSS, the federal government can act as a
beacon for the entire so�ware industry.

1 h�ps://www.regulations.gov/document/ONCD-2023-0002-0001

https://www.regulations.gov/document/ONCD-2023-0002-0001


Table of Contents

Recommended focus areas 1
Recommendations on securing open source so�ware 1

1. SUSTAIN OPEN SOURCE SOFTWARE COMMUNITIES AND CRITICAL INFRASTRUCTURE 1
A. Supporting adoption of security tools and best practices 1
B. Supporting open source so�ware foundations directly 2

2. ACCELERATE THE TRANSITION TOMEMORY SAFETY 3
A. Enable incremental adoption through ergonomic and safe cross-language interoperability 3
B. Measure and track OSS memory safety posture 3
C. Incentivize expansion of a memory-safe OSS ecosystem 4
D. Publish a federal memory-safety roadmap 5

3. FACILITATE EFFORTS TO STANDARDIZE AND STRENGTHEN THE SOFTWARE SUPPLY CHAIN 5
A. Support transparency and integrity with modern so�ware signing techniques 5
B. Support veri�ability and trust in so�ware with provenance generation 6
C. Support vulnerability awareness, remediation and dependency insights tooling 6
D. Partner with critical infrastructure providers to identify and support sector-speci�c dependencies7
E. Explore opportunities to leverage curated open source tools from trusted sources 7

4. SPUR INNOVATION BY INCENTIVIZING NOVEL RESEARCH 8
A. Research techniques for automatic translation frommemory unsafe to memory safe code 8
B. Research ways to lower the risk posed by necessary use of memory-unsafe code 8
C. Make signi�cant investments to incentivize novel security research 9
D. Research techniques to improve the safety of memory-unsafe languages 9
E. Support applied research to enumerate and restrict capabilities of so�ware components. 9

5. CREATE EDUCATIONAL MATERIALS AND CURRICULA 10
A. Invest in training to focus on so�ware security, including memory-safe languages 10
B. Invest in moving educational CS curriculums away frommemory-unsafe languages 10

Conclusion 10
Appendix – Memory Safety 1

A. Google’s e�orts in understanding and developing cross-language interoperability 1
B. Google’s recommendations for future safe cross-language interoperability e�orts 1

Table of Contents



Recommended focus areas

We believe that federal e�orts in the following �ve areas will be the most e�ective:

1. Sustain open source so�ware communities and critical infrastructure.Open source
so�ware and related services underpin most modern so�ware technology, yet they are
largely maintained by volunteer communities and resource-constrained non-pro�ts. The
federal government should actively support and sustain open source so�ware.

2. Accelerate the transition to memory safety.Widespread use of memory-safe
programming languages will eliminate an entire class of security vulnerabilities. The federal
government should champion the transition to memory-safe languages and frameworks and
work with industry to set standards and improve the security of legacy codebases.

3. Facilitate e�orts to standardize and strengthen the so�ware supply chain. The federal
government should actively establish, standardize, and incentivize new best practices for
OSS use across industries and help establish a standard framework for OSS usage in
so�ware systems.

4. Spur innovation by incentivizing novel research. Even with signi�cant recent progress in
the areas of open source cybersecurity, there is still much room for innovation. The federal
government should invest in research and provide rewards for novel discoveries.

5. Create educational materials and curricula. To bridge the gap in developer education
during the transition to secure-by-default systems, the government should support the
creation and adoption of curricula that teach secure so�ware best practices.

Recommendations on securing open source so�ware

We provide the following recommendations toward each of the stated focus areas.

1. SUSTAIN OPEN SOURCE SOFTWARE COMMUNITIES AND CRITICAL INFRASTRUCTURE

It is important to ensure that the government is using OSS in a secure, responsible manner across all
agencies, that the government’s interests in the open source community are represented, and that
the government is able to support and sustain open source so�ware ecosystems.

A. Supporting adoption of security tools and best practices

The Google Open Source Programs O�ce (OSPO) is one of the �rst OSPOs in the industry.2 Our
OSPO is focused on enabling Google to build on open source technologies, share
Google-developed technology under open licenses, and support open source projects,
communities, and maintainers across the entire open source ecosystem. As a result, as of 2021,
more than 10% of all Google full-time employees contribute to open source.3

A federal OSPO, as is proposed in CISA’s Open Source So�ware Security Roadmap,4 would bring
similar bene�ts by managing federal agencies’ consumption of open source and contributions to it.
This o�ce would set policies for the government’s use of open source so�ware, including assessing

4 h�ps://www.cisa.gov/sites/default/�les/2023-09/CISA-Open-Source-So�ware-Security-Roadmap-508c.pdf
3 h�ps://opensource.googleblog.com/2022/06/establishing-new-baselines-identifying-open-source-work-in-an-unstable-world.html

2 h�ps://opensource.google/about

1

https://www.cisa.gov/sites/default/files/2023-09/CISA-Open-Source-Software-Security-Roadmap-508c.pdf
https://opensource.googleblog.com/2022/06/establishing-new-baselines-identifying-open-source-work-in-an-unstable-world.html
https://opensource.google/about


and managing security risks, promoting best practices, and fostering collaboration between
government agencies.

This OSPO would also coordinate and encourage government participation in the open source
community: de�ning policies for how government employees can release and contribute to open
source; teaching federal employees best practices of upstream participation; and advising them on
how to advocate for their needs as open source users.

There are many opportunities for a federal OSPO to improve the security of the open source
ecosystem. Google, for example, created the Open Source Security Upstream Team,5 who spend
100% of their time making security contributions to critical, but under-resourced open source
projects. A federal OSPO could organize a similar team to identify at-risk projects and empower
federal employees to participate in open source security activities on a full- or part-time basis.

B. Supporting open source so�ware foundations directly

Open source so�ware is a critical element of US digital infrastructure that needs �nancial support
through new and existing public funding sources. The federal government should partner with
existing OSS foundations such as the Rust Foundation,6 Python So�ware Foundation,7 Eclipse
Foundation,8 Linux Foundation,9 Open Source Security Foundation (OpenSSF),10 and many others
with expertise in this space. The federal government can leverage their collective knowledge and
relationships to most e�ectively direct funding and support to key projects.

The federal government should consider expanding the availability of public funding programs for
open source technologies, similar to grant programs such as the OpenSSF’s Alpha-Omega
Program,11 US AGM’s Open Tech Fund,12 Mozilla’s Open Source Support Awards,13 and the German
government’s Sovereign Tech Fund.14 The National Science Foundation’s Pathways to Enable Open
Source Ecosystems (POSE)15 program is a promising experiment in direct public funding of open
source innovation, and we applaud its mission to foster wholly new open source foundations and
ecosystems. POSE would be most e�ective if paired with a funding vehicle in the form of an “Open
Source Tech Fund,” providing �nancial support for US and international organizations that maintain
key open source projects. This support will help ensure the security and sustainability of critical,
widely used and free public services like so�ware repositories.

Further, we highly recommend that U.S. sector risk management agencies (SRMAs) and critical
infrastructure operators play a more active role in open source so�ware security by joining and
contributing to organizations like OpenSSF and industry-led forums, such as FinOS16 in the �nancial
sector. These organizations play a critical role in sharing knowledge and best practices and in
developing common open standards to manage risks.

16 h�ps://www.�nos.org/
15 h�ps://new.nsf.gov/funding/opportunities/pathways-enable-open-source-ecosystems-pose
14 h�ps://sovereigntechfund.de/en/
13 h�ps://www.mozilla.org/en-US/moss/
12 h�ps://www.opentech.fund/
11 h�ps://openssf.org/community/alpha-omega/
10 h�ps://openssf.org/
9 h�ps://linuxfoundation.org/
8 h�ps://www.eclipse.org/org/foundation/
7 h�ps://www.python.org/psf-landing/
6 h�ps://foundation.rust-lang.org/
5 h�ps://opensource.googleblog.com/2023/04/googles-open-source-security-upstream-team-one-year-later.html

2

https://www.finos.org/
https://new.nsf.gov/funding/opportunities/pathways-enable-open-source-ecosystems-pose
https://sovereigntechfund.de/en/
https://www.mozilla.org/en-US/moss/
https://www.opentech.fund/
https://openssf.org/community/alpha-omega/
https://openssf.org/
https://linuxfoundation.org/
https://www.eclipse.org/org/foundation/
https://www.python.org/psf-landing/
https://foundation.rust-lang.org/
https://opensource.googleblog.com/2023/04/googles-open-source-security-upstream-team-one-year-later.html


2. ACCELERATE THE TRANSITION TOMEMORY SAFETY

We strongly support prioritizing solutions to the challenges posed by memory safety, given the
large occurrence of memory corruption vulnerabilities in open source compromises. Memory bugs
in memory unsafe languages are too pervasive for reactive approaches to work. As a result, we see
many memory safety vulnerabilities being exploited in-the-wild, despite state-of-art development
practices, fuzz testing and vulnerability management. Consequently, we strongly believe that the
bar going forward should be "safe by default.”

To achieve this, federal agencies should widely promote programming languages, such as Rust and
Go, that default to memory-safe development and safe coding pa�erns for use in applications
where memory-unsafe languages would have previously been preferred. Memory-safe languages
embody safe-by-default, since memory safety is inherently tied to the programming language used
to write applications and services. New development should prioritize memory-safe languages. We
expect that rewriting large, existing unsafe codebases will o�en be impractical. and recommend
that old, unsafe codebases be updated gradually via interoperability or by enforcement of safer
coding pa�erns rather than entirely rewri�en. Furthermore, OS3I should set and track metrics for
measuring memory-safe component usage broadly across the open source ecosystem.

A. Enable incremental adoption through ergonomic and safe cross-language interoperability

An analysis of Android17 and other internal Google codebases indicates that most of our memory
bugs occur in new or recently modi�ed code (50% being less than a year old), and that most
vulnerabilities are memory safety bugs (90% of Android vulnerabilities).18 Our results in Android
suggest that prioritizing new code development in memory-safe languages is both an e�cient and
e�ective strategy for increasing resiliency.19

The federal government should incentivize and support e�orts which enable the incremental
adoption of memory-safe languages in memory-unsafe code bases, rather than comprehensive
rewrites. In particular, we believe that safe and ergonomic interoperability is key to incremental
adoption, especially when it comes to C/C++ and potential successor languages (e.g., Rust):
memory-safe systems can leverage memory-unsafe ecosystems during the transition, and OSS
consumers can start using memory-safe libraries in existing memory-unsafe codebases.

Consequently, Google has invested in be�er understanding interoperability requirements and has
created tooling to meet those requirements for Rust. See the Appendix for examples of our e�orts
(A) and speci�c recommendations for next steps in this area (B).

B. Measure and track OSS memory safety posture

Since the majority of severe vulnerabilities in large C and C++ code bases are frommemory-safety
bugs, including 80% of zero-days being exploited in the wild,20 to assess a project’s security posture
we need to measure whether it uses memory-unsafe components, and if so, understand how the
components are used.

20 h�ps://www.memorysafety.org/docs/memory-safety/
19 h�ps://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
18 h�ps://security.googleblog.com/2019/05/queue-hardening-enhancements.html
17 h�ps://security.googleblog.com/2021/04/rust-in-android-pla�orm.html

3

https://www.memorysafety.org/docs/memory-safety/#fn:1:~:text=A%20recent%20study%20found,were%20memory%20safety%20issues
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html


Consequently, we recommend creating a way to evaluate: 1) whether a given code base relies on
memory-unsafe components, 2) whether it uses tools to detect or mitigate memory safety issues,
and 3) its progress in the transition to memory safety. This is especially important in mixed code
bases utilizing interoperability, where the degree of memory safety falls on a spectrum.

Similarly, metrics should be captured about safe vs. unsafe usage of memory-safe languages. In our
experience, unsafe API and code usage are sometimes necessary, but should be rare, and expert
review is needed in these exceptional cases to catch misuses. Since "mandated expert review" does
not translate to OSS ecosystems, we suggest measuring the prevalence of unsafe coding pa�erns
in otherwise memory-safe projects and providing �nancial incentives towards improvement.

Those metrics could be integrated into existing sources of open source security information, such
as deps.dev.21 These metrics will enable a ratchet e�ect22 to prevent regressions on improvements.
By tracking and enforcing incremental improvements as they roll out, it’s possible to avoid unending
well-intended work to adopt and then re-adopt them without ever reaching an end state.

C. Incentivize expansion of a memory-safe OSS ecosystem

We recommend incentivizing or investing in the development of a memory-safe open-source
ecosystem—an ecosystem of reusable components that support new development in memory-safe
languages. This requires listening to OSS developers: what gaps are preventing them from adopting
memory safe languages? Once the missing parts of the ecosystem are identi�ed, ensure they are
built so they can be reused widely. A mandate to rewrite all open source so�ware in memory-safe
languages is not a practical strategy in the short or medium term, but focusing on several speci�c
areas will pay dividends in the long run by enabling more developers to adopt memory-safe
languages, which will help spur development of the memory-safety ecosystem even further.

We suggest investment the following areas:

● Commonly used libraries that do not have acceptable memory-safe equivalents. This could
include rewriting the library in a memory-safe language, or improving a pre-existing
memory-safe library that is underused due to missing features or substandard performance;

● Libraries that are commonly used across the industry. While it may not be cost-e�ective for
any one entity to fund a rewrite themselves, the ROI increases if the cost is shared across
the industry through, for instance, a foundation like OpenSSF or ISRG;

● Code used in critical infrastructure where high assurance is particularly needed. This would
be a continuation of the work by ISRG.23

● New codebases where there is a choice between using memory-safe and memory-unsafe
languages, such as writing new Linux hardware drivers in Rust.

Just creating these memory-safe replacements for commonly-used and/or commonly-exploited
libraries is not enough to drive adoption. Any replacements must come with evidence to show they
are at par or superior to the libraries they intend to replace. The government can support building a
body of evidence, which could include:

23 h�ps://www.memorysafety.org/docs/memory-safety/
22 h�ps://en.wikipedia.org/wiki/Ratchet_e�ect
21 h�ps://deps.dev/

4

https://www.memorysafety.org/docs/memory-safety/
https://en.wikipedia.org/wiki/Ratchet_effect
https://deps.dev/


● standardized benchmarks, to demonstrate comparable performance;
● test and conformance suites, to veri�ably demonstrate compatibility;
● testimonials from relying parties, like cargo-vet, to demonstrated expert review;
● evidence of active maintainership or corporate sponsorship to demonstrate support.

This evidence can help advocate for use of these libraries and bring memory-safety bene�ts to the
users that depend on them.

D. Publish a federal memory-safety roadmap

We recommend the Government, led by OS3I, adopt and publish a roadmap for their transition to
memory safety, including the following priorities:

● Update policies and procurement guidelines to ensure memory-safe languages are the
default for new government so�ware;

● Examine whether relevant so�ware security standards and frameworks should be updated
to prioritize memory safety;

● Invest in interoperability tools that support incremental adoption, not large rewrites;
● Prioritize partial rewrites of memory-unsafe components that cannot be isolated;
● Invest in creating and sharing new memory-safe equivalents for those components; and
● Create milestones based on, for example, percentage of memory-safe lines or components.

By replacing components one-by-one, security improvements are delivered continuously instead of
all at once at the end of a long rewrite. A full rewrite may eventually be achieved with this
incremental strategy, but without the risks typically associated with those large rewrites.

3. FACILITATE EFFORTS TO STANDARDIZE AND STRENGTHEN THE SOFTWARE SUPPLY CHAIN

The federal government should play a critical role in de�ning cybersecurity requirements that take
these standards and best practices into account during procurement, ensuring that vendors are
providing components that meet industry standards for security and that are compatible with
existing OSS tools and frameworks. By doing so, the federal government can help to establish and
foster an overall culture of responsible OSS use in so�ware systems, and ensure that related critical
so�ware systems are protected from future cyber threats.

A. Support transparency and integrity with modern so�ware signing techniques

The government should promote the adoption of modern so�ware signing techniques that protect
against compromise with increased transparency. So�ware signing can ensure the integrity of
so�ware updates, downloads from package repositories, supply chain a�estations, and more.
Google has helped create and maintain Sigstore,24 a modern so�ware-signing service that makes it
easy to create so�ware signatures, without the complexities of key management.

Sigstore’s novel techniques use ephemeral keys, transparency logs, and individual- or
workload-based identities to create publicly auditable signatures. Each signing event is published in
a public, append-only ledger, allowing systems to verify the authenticity and integrity of so�ware
24 h�ps://www.sigstore.dev/

5

https://www.sigstore.dev/


artifacts. The ephemeral keys expire shortly a�er use, which protects against key compromise, and
individuals can prevent identity compromise by detecting unauthorized signing events in the
transparency log.

Google supports Sigstore as a public good service and we promote its use based on our own
experience using similar techniques with transparency logs25 to protect Android, Chrome,26 and
Pixel �rmware.27 Signing techniques based on transparency logs become more secure when they
are more widely used, as they increase the speed at which compromise can be detected, and help
incentivize good behavior. We suggest the government help support widespread adoption of
transparency-backed modern signing techniques by promoting and using solutions such as
Sigstore, as well as supporting their integration into widely used open source so�ware ecosystems.

B. Support veri�ability and trust in so�ware with provenance generation

The government should promote veri�ability across the so�ware supply chain. A key aspect of
so�ware veri�ability is the production, availability, and consumption of a�estations such as
provenance. Provenance for OSS provides knowledge about where pieces of system so�ware
came from and how they were built, in a veri�able way. This helps so�ware owners track the source
of so�ware components and verify they were created in accordance with set policies.

Google supports Supply-chain Levels for So�ware Artifacts28 (SLSA) as a standard for evaluating
and describing how securely so�ware was built. SLSA provides incrementally adoptable guidelines
for improving supply chain security. Over the last decade, Google has successfully used an internal
version of SLSA to protect against insider risk, build system tampering, and unilateral code changes.

By promoting SLSA as a national standard for so�ware provenance, the government can raise the
bar for supply chain security standards. Support for SLSA needs to be built into open source
ecosystems,29 including SLSA-compliant builders, tooling for provenance production, and automatic
veri�cation solutions. Integrating SLSA tooling into core ecosystem tooling allows for both the
generation of signed provenance at time of production, and the veri�cation of that provenance at
time of consumption, by default. Open source maintainers should not have to shoulder the burden
of adopting SLSA; it should become part of the default fabric of the so�ware ecosystems they
already use for development.

C. Support vulnerability awareness, remediation and dependency insights tooling

Transparency enables insights into whether vulnerabilities actually a�ect so�ware in use and
potential paths to remediation. The government should adopt and promote vulnerability tooling and
dependency mapping services that focus on open source and provide ways to automate
remediation at scale.

29 h�ps://security.googleblog.com/2023/04/celebrating-slsa-v10-securing-so�ware.html
28 h�ps://slsa.dev/
27 h�ps://security.googleblog.com/2023/08/pixel-binary-transparency-veri�able.html
26 h�ps://chromium.googlesource.com/chromium/src/+/master/net/docs/certi�cate-transparency.md
25 h�ps://transparency.dev/

6

https://security.googleblog.com/2023/04/celebrating-slsa-v10-securing-software.html
https://slsa.dev/
https://security.googleblog.com/2023/08/pixel-binary-transparency-verifiable.html
https://chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-transparency.md
https://transparency.dev/


Google collaborated with the OpenSSF to create the Open Source Vulnerabilities (OSV) Schema,30
as well as OSV.dev31 and OSV-Scanner32 to simplify vulnerability detection and remediation for both
open source developers and consumers. Combined, they help users triage a large number of known
vulnerabilities and provide a foundation for automated vulnerability remediation, simplifying the
sometimes complex process of determining how to update a�ected dependencies.

To understand a�ected dependencies, Google uses information from our deps.dev service,33 a free,
public service that allows organizations to understand all of their dependencies, including
information about ever-changing dependency graphs, security best practices, known
vulnerabilities, known malicious packages,34 and licenses, all available via an API.

We believe the government should both use and promote the adoption of both the OSV and
deps.dev services. Adoption of deps.dev would increase visibility into open source dependencies,
both for ongoing monitoring and maintenance and to support responses during incidents (such as
querying whether an organization was a�ected by the Log4Shell vulnerability,35 and then planning
the appropriate dependency updates to remove the vulnerability).

In addition to adoption of OSV as a comprehensive vulnerability database, the government should
also further promote closer integration of OSV with the National Vulnerability Database (NVD),
speci�cally encouraging NVD to adopt machine-readable naming/versioning schemes compatible
with OSV (e.g. PURLs36) to replace CPEs, as well as using OSV as a reference data source for
populating various �elds (e.g. package names, impacted versions, etc).

D. Partner with critical infrastructure providers to identify and support sector-speci�c
dependencies

Following Log4Shell, companies like Google, Microso�, and Amazon collaborated to fund
Alpha-Omega, a grant program aimed at supporting the world’s most critical open source projects.
We urge the federal government and SRMAs to fund and coordinate a similar exercise to support
the most critical open source dependencies on a sector-by-sector basis. Infrastructure operators in
sectors like water, energy, or manufacturing may share sector-speci�c dependencies on OSS
projects, which could make for a�ractive exploitation targets for sophisticated cyber actors.

To date much of the federal government’s e�orts to defend critical infrastructure has focused on
sharing threat intelligence, identifying risks, and initiating joint response e�orts. “Shi�ing le�” by
directing resources to securing supply chains further upstream can help to mitigate the risks posed
by widespread disruptions from cyber incidents, and strengthen the resilience of the U.S. economy.

E. Explore opportunities to leverage curated open source tools from trusted sources

It may be in the government’s interest to consume open source libraries that are curated by a
trusted provider. For example, Google Cloud o�ers a service called Assured Open Source So�ware,
which redistributes more than 2,500 Java and Python libraries, and adds vulnerability testing,

36 h�ps://github.com/package-url/purl-spec
35 h�ps://www.cisa.gov/sites/default/�les/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
34 h�ps://github.com/ossf/malicious-packages
33 h�ps://deps.dev/
32 h�ps://github.com/google/osv-scanner
31 h�ps://osv.dev/
30 h�ps://ossf.github.io/osv-schema/

7

https://github.com/package-url/purl-spec
https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://github.com/ossf/malicious-packages
https://deps.dev/
https://github.com/google/osv-scanner
https://osv.dev/
https://ossf.github.io/osv-schema/


fuzzing, and signing to verify integrity. Curation tools like Assured Open Source So�ware can help
simplify compliance and achieve a high degree of assurance when using common OSS packages.

4. SPUR INNOVATION BY INCENTIVIZING NOVEL RESEARCH

There are many areas of open source security where we simply don't know enough to understand if
a given solution or improvement would be possible or e�ective. By incentivizing research, we can �ll
knowledge gaps and help to advance the state of the art in security and safety.

A. Research techniques for automatic translation frommemory unsafe to memory safe code

The government should support research into translation tools, such as c2rust,37 that assist in
automatically translating C programs to Rust. Even if this type of tool cannot generate idiomatic
Rust for all code, since aspects of Rust translation require a human-guided redesign, it does reduce
the manual e�ort required for such a translation, and it prevents some of the bugs caused by
humans. Translation may also begin with changes to the C++ codebase to make object lifetimes
more compatible with e.g. Rust's borrow checker. To this end, Google is exploring how to annotate
C++ object lifetimes in Clang.38

That said, syntactic transformation is only the �rst step. The overall goal would be to convert C and
C++ code into equivalent Rust code that is idiomatic and maintainable, but this is far beyond the
capabilities of the translation assistance tools available today. It is possible that certain parts of
code might need to undergo a redesign while being translated to Rust, and although generative AI
might help with this in the future, it likely will still require some human input.

B. Research ways to lower the risk posed by necessary use of memory-unsafe code

The federal government should take a realistic approach that automatic translation tools have limits,
and that not all existing, legacy memory-unsafe systems will be portable to memory-safe
languages. Some of the most critical components of open source so�ware (such as operating
systems and device drivers) cannot be entirely wri�en in high level languages at all. Furthermore,
given that most bugs occur in newly wri�en code, it should not be recommended to a�empt to
perform large, full-stack rewrites of stable memory-unsafe systems to memory-safe languages.

To protect this necessary memory-unsafe code, invest in research to further improve
state-of-the-art fuzz testing (“fuzzing”) technology, an automated testing technique primarily
useful for detecting memory corruption vulnerabilities in C/C++ code. Recently, fuzzing has seen
new advances, and our OSS-Fuzz service39 can now catch broader classes of vulnerabilities beyond
memory safety, including remote execution vulnerabilities40 such as Log4Shell.41

Research should be done into expanding fuzz testing at scale, to detect even more types of
vulnerabilities in additional languages across more open source libraries. For example, Google has
used AI to automatically generate fuzzing targets,42 which increases the scale of fuzzing tools,

42 h�ps://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
41 h�ps://security.googleblog.com/2021/12/improving-oss-fuzz-and-jazzer-to-catch.html
40 h�ps://security.googleblog.com/2022/09/fuzzing-beyond-memory-corruption.html
39 h�ps://github.com/google/oss-fuzz
38 h�ps://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377
37 h�ps://github.com/immunant/c2rust

8

https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2021/12/improving-oss-fuzz-and-jazzer-to-catch.html
https://security.googleblog.com/2022/09/fuzzing-beyond-memory-corruption.html
https://github.com/google/oss-fuzz
https://discourse.llvm.org/t/rfc-lifetime-annotations-for-c/61377
https://github.com/immunant/c2rust


reduces the barrier to adoption of fuzzing tools, and increases fuzzing coverage across critical
legacy systems that are wri�en in memory-unsafe languages.

Another avenue of research addresses protecting environments where memory-unsafe code runs.
Some potential solutions are sandbox-by-default,43 enclaves,44 formal methods,45 and low-level
architecture improvements such as MTE46 or CHERI,47 which is a key component of the UK’s
Semiconductor Strategy.48

C. Make signi�cant investments to incentivize novel security research

The government should incentivize research that expands both traditional security �elds, such as
vulnerability detection, and new areas, such as the applications of AI in cybersecurity.

Similar to Google’s Open Source So�ware Vulnerability Rewards Program,49 the government should
o�er �nancial incentives to the diverse community of academic and security researchers who �nd,
responsibly report, and �x vulnerabilities in critical open source projects.

The government should also organize programs aimed at driving innovation in so�ware security and
creating a new generation of security tools, similar to DARPA’s New AI Cyber Challenge.50

D. Research techniques to improve the safety of memory-unsafe languages

While we believe that a transition to memory-safe languages is the correct long-term solution, we
expect to have a large body of memory-unsafe code likely for decades to come. This code can still
be made safer—or in some instances completely safe—to have short-term impact.

We recognize that decades of a�empts at making C and C++ safe have not succeeded. We suggest
a di�erent approach, which focuses on denying a�ackers those primitives in the �rst place, through
the elimination of classes of vulnerabilities. Speci�cally, we believe that initialization, spatial,51 and
type52 safety may be within reach for C++. Complete temporal safety may become possible with
appropriate hardware support,53 and several major improvements are already available to use.54

The government should incentivize research into the feasibility of such improvements for
memory-unsafe languages. Additionally, the government should also incentivize language steering
commi�ees to make safety a priority.

E. Support applied research to enumerate and restrict capabilities of so�ware components.

We encourage federal support for research into capability enumeration and restriction. Restricting
so�ware capabilities is an e�ective way to mitigate security risks. For example, if the Log4j library

54 h�ps://google.github.io/tcmalloc/gwp-asan.html

53 h�ps://security.googleblog.com/2022/05/retro��ing-temporal-memory-safety-on-c.html

52 h�ps://i.blackhat.com/USA-22/Thursday/US-22-Bialek-CastGuard.pdf
51 h�ps://discourse.llvm.org/t/rfc-c-bu�er-hardening/65734
50 h�ps://openssf.org/press-release/2023/08/09/openssf-to-support-darpa-on-new-ai-cyber-challenge-aixcc/
49 h�ps://bughunters.google.com/open-source-security
48 h�ps://www.gov.uk/government/publications/national-semiconductor-strategy/national-semiconductor-strategy
47 h�ps://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
46 h�ps://source.android.com/docs/security/test/memory-safety/arm-mte
45 h�ps://github.com/hacspec/hax
44 h�ps://github.com/project-oak/oak
43 h�ps://cloud.google.com/kubernetes-engine/docs/concepts/sandbox-pods

9

https://google.github.io/tcmalloc/gwp-asan.html
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://i.blackhat.com/USA-22/Thursday/US-22-Bialek-CastGuard.pdf
https://discourse.llvm.org/t/rfc-c-buffer-hardening/65734
https://openssf.org/press-release/2023/08/09/openssf-to-support-darpa-on-new-ai-cyber-challenge-aixcc/
https://bughunters.google.com/open-source-security
https://www.gov.uk/government/publications/national-semiconductor-strategy/national-semiconductor-strategy
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://github.com/hacspec/hax
https://github.com/project-oak/oak
https://cloud.google.com/kubernetes-engine/docs/concepts/sandbox-pods


had only write access to log �les, with no other capabilities like network access or ability to de�ne
new classes, the impact of the Log4Shell vulnerability would have been signi�cantly reduced.

Google’s recently launched Capslock55 project is one example of capability enumeration research.
Capability restriction research includes sandboxing approaches and capability-based API design
contracts, which allow consumers of OSS so�ware to limit the scope of security-sensitive
operations to a small and controlled subset through a well-de�ned system.

5. CREATE EDUCATIONAL MATERIALS AND CURRICULA

While the ultimate goal is security by default, developer education can address these gaps during
the transition to safe-by-default ecosystems. For instance, developers may not know how to
program in memory-safe languages; they may not know the risks posed by using so�ware for
which integrity cannot be veri�ed; or they may not understand the risks posed by memory unsafety.

A. Invest in training to focus on so�ware security, including memory-safe languages

Consistent with the recommendations of the Cyber Safety Review Board,56 we recommend that the
federal government invest in cybersecurity training in higher educational institutions and for federal
employees focused on key so�ware security best practices, speci�cally the usage of memory-safe
languages and evaluation of open source libraries. We also recommend integrating safety curricula
into existing training to convey the importance of safe-by-default principles and the tools and
techniques that support them.

B. Invest in moving educational CS curriculums away frommemory-unsafe languages

We recommend that computer science (CS) curricula move away frommemory-unsafe languages
like C and C++, especially in introductory classes, in operating systems and compiler classes, and in
non-CS majors where only one programming language is taught. We also recommend including
education on safe-by-default tools and techniques in existing CS training.

When teaching memory-unsafe languages is necessary (for example, training engineers to work on
existing memory-unsafe codebases), we recommend requiring prerequisite experience with
memory-safe languages, prefacing educational material with data about risks, and overall dispelling
the misconception that they can ever be used safely (even by engineers with signi�cant expertise).

Conclusion

We look forward to the next steps in the Biden Administration’s e�orts to address the challenges of
open source security. While the problem space is large, it is tractable, with real solutions. We now
have an opportunity to make a timely, sizable, and impac�ul improvement on the open source
so�ware ecosystem, and usher in a new, more secure era.

56 h�ps://www.cisa.gov/sites/default/�les/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
55 h�ps://github.com/google/capslock

10

https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://github.com/google/capslock


Appendix – Memory Safety

A. Google’s e�orts in understanding and developing cross-language interoperability

We have invested in both understanding the requirements for interoperability and creating new
tooling as needed. For example:

● We have published our internal analyses on how we evaluated and determined our Rust/C++
interoperability needs for Android57 and Chromium58.

● We have developed and open-sourced autocxx,59 a popular interoperability tool.
● We are also investigating more seamless C++/Rust interoperability in Crubit.60 Apple is

investing in seamless C++/Swi� interoperability61 for similar reasons.

B. Google’s recommendations for future safe cross-language interoperability e�orts

There remain unsolved challenges. Rust and C++ have di�erent semantics and di�erent
requirements. However, we feel this is a promising direction, and the remaining open questions are
likely either not going to hinder productive use, or are solvable with additional work and investment.
In particular, we recommend:

● Investment to triage and �x bugs in the rust-bindgen project62 (a project that generates Rust
bindings for C/C++ code and supports other C++ interoperability tools) which would
immediately and scalably improve C++/Rust interoperability for many users.

● Investment in the Rust language tweaks known to improve the quality and ergonomics of
C++/Rust interoperability

● Extending Rust in prominent, useful open-source C++ projects to publicize the success of
solving the interoperability problems, showcased through extensive blog posts and talks. We
recommend two use cases: (a) a project where existing tools like cxx are su�cient, (b) a
project where a more general, seamless C++/Rust interoperability is needed.

● Investment in Rust tooling to more easily enable mixed-language codebases. Existing users
of C/C++ cannot easily use Rust's standard build tooling like “Cargo”, and more formal
support is needed for linking a mixed-language codebase with complex dependencies.

62 h�ps://rust-lang.github.io/rust-bindgen/
61 h�ps://www.swi�.org/documentation/cxx-interop/
60 h�ps://github.com/google/crubit
59 h�ps://github.com/google/autocxx
58 h�ps://www.chromium.org/Home/chromium-security/memory-safety/rust-and-c-interoperability/
57 h�ps://security.googleblog.com/2021/06/rustc-interop-in-android-pla�orm.html

Appendix

https://rust-lang.github.io/rust-bindgen/
https://www.swift.org/documentation/cxx-interop/
https://github.com/google/crubit
https://github.com/google/autocxx
https://www.chromium.org/Home/chromium-security/memory-safety/rust-and-c-interoperability/
https://security.googleblog.com/2021/06/rustc-interop-in-android-platform.html

