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Overview

Structured audits of AI systems are increasingly recognized as a way to increase accountability and
identify risks from unsafe or societally harmful AI systems. Under Section 4.1(i)(C) of US Executive
Order (EO) 14110 [34], NIST has been directed to develop “guidance and benchmarks for evaluating
and auditing AI capabilities.” We offer the following comment to the Request for Information (RFI)
Related to NIST’s Assignments Under Sections 4.1, 4.5 and 11 of the Executive Order Concerning
Artificial Intelligence [30] to accompany our recent paper, Black-Box Access is Insufficient for
Rigorous AI Audits [14]. Our goal is to communicate the scientific consensus that (1) transparency
regarding the access and methods used by auditors is needed to properly interpret audit results,
and (2) white- and outside-the-box access allow for substantially more thorough assessments than
black-box access alone.
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Black-Box Access is Insufficient for Rigorous AI Audits

Recently, some developers of prominent state-of-the-art AI systems have kept most details of their
models private [9]. To public knowledge, voluntary external audits of these systems have primarily
involved analysis of the input/output behavior of models [3, 28, 35, 46]. This form of access in which
auditors are only able to see outputs for given inputs is known as black-box access. Unfortunately,
black-box access is very limiting for auditors. Some problems, such as anomalous failures, are
difficult to detect with black-box access [24], and others, such as dataset biases, can be actively
reinforced by testing data [42].
The ability to query a black-box system is useful, but many of today’s evaluation techniques

require access to weights, activations, gradients, or the ability to fine-tune the model [11].White-box
access refers to the unrestricted ability to observe a system’s internal workings. It enables evaluators
to apply more powerful attacks to automatically identify weaknesses [18, 37], study internal
mechanisms responsible for undesirable model behaviors [21, 26], and identify harmful dormant
capabilities through fine-tuning [39, 50]. Meanwhile, outside-the-box access involves additional
contextual information about a system’s development or deployment such as methodology, code,
documentation, hyperparameters, data, deployment details, and findings from internal evaluations.
It allows auditors to study risks that stem from methodology or data [6, 13, 29, 42] and makes
it easier to design useful tests. This has led to a consensus in scientific discourse that white-
and outside-the-box access allow for substantially more scrutiny than black-box access alone
[1, 2, 10, 11, 41, 44].

Incorporating White- and Outside-the-Box Access into Practice

Absent proper guidance and regulatory action, black-box audits may become standard because they
are precedented [32], existing calls for audits are often agnostic to form of access, and developers
have incentives to limit external scrutiny. Industry actors have previously lobbied for limiting
access given to auditors [19]. Here, we overview practical considerations involving white- and
outside-the-box audits.

What kinds of systems should be considered for white- and outside-the-box audits? Prior
work has argued that the rigor of AI audits should be proportional to the risks posed by the audited
system [2, 40]. Examples of systems to consider for white- and outside-the-box audits may include:

• Models that qualify as dual-use foundation models under definition 3(k) in EO 14110 [34].
• Models that pose significant risks based on their application area—many high-risk applica-
tions were identified by the EU AI Act [16].

• Models that demonstrate high levels of agency [15, 43, 48, 49] which can be measured via
performance on long-horizon tasks that require sophisticated planning [23, 45].

What skills and resources are needed for white- and outside-the-box audits? Some black-box
AI evaluations can be conducted through very simple interfaces. However, some white-box (e.g.,
attacks, fine-tuning, interpretability) and outside-the-box (e.g., data or methodological analysis)
techniques require extensive expertise and computing hardware.

What evaluation strategies do white- and outside-the-box access enable?
• White-box access allows for more powerful attack algorithms to design inputs which elicit
harmful outputs from the system (e.g., instructions for committing crimes). This is largely
due to how white-box access allows for gradient-based optimization [27].
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• White-box access allows auditors to make stronger assurances against unforeseen failure
modes by analyzing the system’s robustness to perturbations to its internal state [25].

• White-box access allows auditors to fine-tune the system to assess risks from dormant
capabilities and post-deployment modifications [39].

• White-box access allows auditors to search for explanations of behaviors and signs of unde-
sirable internal mechanisms. For example, analyzing how models represent data involving
different demographics could be used to assess its potential to discriminate [5].

• Outside-the-box access to training data can allow auditors to search for issues such as
dataset biases [6], dataset poisoning [12], or copyright violations [22].

• Outside-the-box access allows auditors to analyze tradeoffs and risks taken by developers
by assessing the methodology used to develop the system.

• Outside-the-box access to developers’ internal evaluation results allows auditors to focus
on a complementary set of evaluations.

How can leaks be avoided? The risk of leaks from auditors can be minimized through several
technical, physical, and legal mechanisms. Technical solutions include providing auditors with
de facto white-box access through application programming interfaces [7, 11, 36, 44]. Physical
solutions can involve providing full white-box access through on-site secure research environments
[20]. Legal solutions include formal training to protect confidentiality, non-disclosure clauses, clear
terms of engagement in auditor-client contracts, and government standards, and have already been
implemented in other industries with audits [4, 8, 17, 33, 38].

What disclosures are necessary to understand the limitations of an audit? Because the result
of an audit can depend greatly on the methods that were used, the raw findings are insufficient to
understand it alone. For regulators to properly interpret the outcome of an audit, they must also
know what access was granted and what methods were used.

What kinds of public investments can help to develop tools and infrastructure for white-
and outside-the-box AI audits? Auditors and developers alike benefit from improved techniques
for evaluating, attacking, and interpreting AI systems. Public investments can help to facilitate
further progress on these. First, government entities can offer support for scientific research into
relevant techniques, such as the NSF’s Safe Learning-Enabled Systems program [31]. Second, enti-
ties can develop secure evaluation infrastructure, such as the US National Deep Inference Facility
[47], and subsidize usage costs for research with social benefits.

If there are any questions pertaining to our comment and/or recommendations, please contact
Carson Ezell (cezell@college.harvard.edu) and Stephen Casper (scasper@mit.edu).
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