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Abstract of the Dissertation 

Unraveling the Effects of Land Use Planning and Energy Policy on Travel Behavior 

By 

Harya S Dillon 

Doctor of Philosophy in Planning, Policy, and Design 

University of California, Irvine, 2017 

Professor Douglas Houston, Chair 

 

This three-essay dissertation focuses on understanding linkages between urban form, travel 

behavior, ownership of alternative fuel vehicles, active commuting, congestion, fuel 

consumption, and air pollution (including greenhouse gas emissions). These essays estimated 

different specifications of Generalized Structural Equation Models (GSEM) to explicitly account 

for residential self-selection and vehicle choice endogeneities.  

The first essay analyzes the influence of land use policies and gasoline prices on driving 

patterns. I estimated a Generalized Structural Equation Model (GSEM) with a Tobit-link 

specification on a Southern California subsample of the 2009 National Household Travel Survey 

(NHTS). These data haves a quasi-experimental nature thanks to large exogenous variation in 

gasoline price during the survey period. I analyzed separately home-based work trips and non-

work trips under the hypothesis that households have more flexibility to adjust their non-work 

trips when gasoline prices change, whereas most of the literature does not take trip purpose into 

account. To measure urban form, which is treated as a latent construct, I used fine-grained 

geospatial information including population density, land use mix, employment density, distance 

to employment centers and transit availability. I found that, in the short run, households drive 

0.171% less for non-work trips when gasoline prices increase by 1%, while work trips are not 



x 
 

responsive to gasoline price changes. This suggests that, in the short term, higher fuel prices 

reduce discretionary driving such as shopping and recreational trips, but they do not affect non-

discretionary driving such as commuting trips. My results also suggest that policies that seek to 

increase transit service and housing opportunities near employment centers will reduce driving.  

The second essay investigates the impact of government incentives such as access 

exemption to High Occupancy Vehicle (HOV) lanes and parking privileges on household 

ownership of Alternative Fuel Vehicles (AFVs) using Generalized Structural Equation Models 

(GSEM), and accounts for residential self-selection, household demographics and ambient 

political-environmentalism. I analyzed geocoded travel diary data from the 2012 California 

Household Travel Survey (CHTS), linked with fueling station data from the US Department of 

Energy Alternative Fuels Data Center and precinct level election data from the UC Berkeley 

Statewide Database. My findings suggest that, on average, households with alternative fuel 

vehicles drive approximately 10 miles more on weekdays and about 0.5 miles more on non-

discretionary trips than otherwise similar households. In addition, households who live closer to 

a freeway with HOV lanes, work closer to an AFV charging facility (that provides free parking), 

and are likely supportive of pro-environmental measures are more likely to own alternative fuel 

vehicles. 

The third essay examines the influence of urban form on transit use and non-motorized 

travel (NMT, including biking and walking) for households (with at least one employed adult) in 

Los Angeles and Orange Counties in California based on 2009 National Household Travel 

Survey (NHTS) data.  The objectives of the research are (1) to assess several methods for 

measuring urban form features in the near-residence and near-workplace environments and (2) to 

assess the importance of these urban form features on transit use and NMT after accounting for 
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the influence of these features on household vehicle ownership and residential selection.  Results 

provide insights into the relative influence of several specifications of population density, transit 

access and walkability measures on transit use and NMT for commute and non-work trips. 

Reduced form models suggest that the dominant determinant of discretionary travel is household 

socio-demographic status. In terms of residential selection, lower income, younger, and smaller 

households are more likely to choose a dense, pedestrian friendly, and transit rich neighborhood. 

In terms of vehicle ownership, households living in high density, pedestrian friendly, and transit 

rich neighborhoods are less likely to own vehicles. After accounting for the influence of urban 

form on vehicle ownership and residential selection, workplace transit accessibility has greater 

influence on transit commuting than transit access near a household’s residence. Results vary by 

how urban form is specified and by the source of travel data. Finally, there is some evidence that 

population density affects active travel for discretionary purposes. 
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1 Introduction 

Understanding linkages between urban form, travel behavior, vehicle choice, congestion, and air 

pollution (including greenhouse gas emissions) is one of the main challenges facing urban 

transportation systems in the United States and California in particular. According to the Texas 

A&M Transportation Institute (TTI) 2015 Urban Mobility Scorecard (UMS), in 2014 congestion 

cost the economy $160 Billion in delays and wasted fuel (TTI & INRIX, 2015). About $ 23.9 

Billion or 15% of that cost was borne by Californians. To put this figure into perspective, 

California accounts for 13.2% of the US economy (Bureau of Economic Analysis, 2014) and 

about 12% of US population (US Census, 2017). The Los Angeles and San Francisco regions 

have been consistently ranked among the most congested cities in the U.S. Therefore, while the 

average Californian is more productive, his/her travel behavior is disproportionately detrimental 

to the environment. 

The impacts of transportation on local air quality and greenhouse gas (GHG) emissions 

have been of concern to policymakers for some time. Since the 1980s, proponents of the New 

Urbanism movement have sought to promote socially and environmentally desirable travel 

behavior, namely less driving and more walking and transit use, by changing the urban 

environment. The popularity of these ideas can be attributed to the increasing social and 

environmental costs of driving (Boarnet & Crane, 2001; Brownstone & Golob, 2009). Today, 

many MPOs and transportation planners in the United States have turned to land use planning 

and urban design measures to rein in automobile use (SCAG, 2016). 

As in many other parts of the country, transportation accounts for over half of ozone 

precursors and particulate matter emissions, and for nearly 40 percent of greenhouse gas 

emissions in California (CA Governor Executive Order No. B-16, 2012; CARB, 2013). One of 
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the responses from legislators is California’s Assembly Bill 32 (AB 32), the Global Warming 

Solutions Act 2006 and State Bill 375 (SB 375) also known as The Sustainable Communities and 

Climate Protection Act of 2008. SB 375 requires 18 Metropolitan Planning Organizations 

(MPOs) to develop Sustainable Community Strategies (SCS) that demonstrate how they will 

meet GHG reduction targets set by the California Air Resources Board, through integrated land 

use, affordable housing and transportation planning strategies (CARB, 2013). Once adopted by 

an MPO, its SCS is incorporated into a Regional Transportation Plan (RTP), a planning 

document that is required for federal infrastructure funding. In particular, the Southern California 

Association of Governments (SCAG) developed plans that are explicitly aimed at reducing the 

use of private cars and increasing the use of transit, walking and bicycling by coordinating transit 

corridor investments with housing supply trajectories (SCAG, 2016). In November 2016, Los 

Angeles County voters generously passed Measure M which is expected to generate $120 billion 

in public transit investment from a half percent increase in sales tax for the next 40 years. 

Furthermore, to reduce the local, regional and global air pollution from transportation, 

California has decided to reduce its transportation petroleum use by 50% by 2030. One key 

strategy to achieve this ambitious goal is to increase the share of alternative fuel vehicles (AFVs) 

on the road (CA Governor Executive Order No. B-16, 2012). Since travel behavior is influenced 

by policies that shape urban form and driving costs (such as gasoline taxes and tolls), informed 

policy choices play a pivotal role in improving the region’s overall economic competitiveness.   

This three-essay dissertation seeks to contribute to our understanding of linkages between 

urban form, travel behavior, ownership of alternative fuel vehicles, active commuting, 

congestion, fuel consumption, and air pollution (including greenhouse gas emissions). These 

three essays share some common research design and methodological approaches: (1) using 
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disaggregate data at the household level, and (2) addressing endogeneity of residential selection 

and/or vehicle ownership.  

In this dissertation, the household is the assumed to be the behavioral agent making travel 

decisions. Household members typically share resources and common goals – maximizing 

common utility under common budget constraints. A household is typically defined as co-

residents sharing the same housing unit and a fixed co-location which affects home-based travel 

decisions. It is also common for household members to share vehicles and make collective 

destination decisions. Furthermore, travel surveys used in this research, the 2009 National 

Household Travel Survey (NHTS) and the 2012 California Household Travel Survey (CHTS), 

used geographically stratified sampling techniques to target sampled households. Thus, 

household members are not identically and independently distributed within the household. That 

said, intra-household dynamics such as car sharing, budgeting, and priority among members, are 

outside the scope of this research. 

In a geographically stratified household travel survey, residential location influences the 

probability of being observed in the sample. Sampled household had previously made its 

residential decision and therefore residential self-selection can be understood as a sampling 

problem. Although households were recruited using random-digit dialing, the probability of 

being sampled/observed in a particular location/neighborhood is not random. The 2009 NHTS 

and 2012 CHTS are cross-sectional surveys; they do not repeat measurements for households 

and thus I cannot control for time-invariant factors that might affect residential choices. 

Likewise, households had previously made their vehicle ownership decisions prior the survey 

date. Vehicle ownership or access and travel behavior outcomes such as trip rate, travel distance, 

and mode choice, may present a causal feedback. For these reasons, addressing endogeneities is 
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an important contribution of this dissertation to travel behavior research. As such, these essays 

estimated different specifications of Generalized Structural Equation Models (GSEM) to 

explicitly account for residential self-selection and vehicle choice endogeneities (Brownstone, 

2008; Brownstone & Golob, 2009).  

The remaining chapters are organized as follows. Chapter 2 analyzes the influence of 

land use policies and gasoline prices on driving patterns. I estimated a Generalized Structural 

Equation Model (GSEM) with a Tobit-link specification on a Southern California subsample of 

the 2009 National Household Travel Survey (NHTS). I found that, in the short run, households 

drive 0.171% less for non-work trips when gasoline prices increase by 1%, while work trips are 

not responsive to gasoline price changes. This suggests that, in the short term, higher fuel prices 

reduce discretionary driving such as shopping and recreational trips, but they do not affect non-

discretionary driving such as commuting trips. My results also suggest that policies that seek to 

increase transit service and housing opportunities near employment centers will reduce driving. 

Chapter 3 investigates the impact of government incentives such as access exemption to 

High Occupancy Vehicle (HOV) lanes and parking privileges on household ownership of 

Alternative Fuel Vehicles (AFVs) using Structural Equation Modeling techniques, and accounts 

for residential self-selection, household demographics and ambient political-environmentalism. I 

estimated a Generalized Structural Equation Models (GSEM) with a logit-link specification on 

the 2012 California Household Travel Survey (CHTS). My findings suggest that, on average, 

households with alternative fuel vehicles drive approximately 10 miles more on weekdays and 

about 0.5 miles more on non-discretionary trips than otherwise similar households. In addition, 

households who live closer to a freeway with HOV lanes, work closer to an AFV charging 
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facility (that provides free parking), and are likely supportive of pro-environmental measures are 

more likely to own alternative fuel vehicles. 

Chapter 4 examines the influence of urban form on transit use and non-motorized travel 

(NMT, including biking and walking) for households (with at least one employed adult) in Los 

Angeles and Orange Counties in California based on 2009 National Household Travel Survey 

(NHTS) data. Results provide insights into the relative influence of several specifications of 

population density, transit access and walkability measures on transit use and NMT for commute 

and non-work trips. Reduced form models suggest that discretionary travel is dominated by 

household’s socio-demographic status. Results vary by how urban form is specified and by 

source of travel data. Finally, there is some evidence that population density affects active travel 

for discretionary purposes. 

Finally, Chapter 5 provides concluding remarks and suggestions for future travel 

behavior research.  
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Oxford University Press. 
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2 The Impact of Urban Form and Gasoline Prices on Vehicle Usage: Evidence from the 
2009 National Household Travel Survey0F

1 

 

This paper relies on generalized structural equation modeling (SEM) to tease out the relationship 

between land use, gasoline prices and travel behavior. We analyze data from the Southern 

California subsample of the 2009 National Household Travel Survey (NHTS), which has a quasi-

experimental nature thanks to large exogenous variations in gasoline prices during the 

administration of the NHTS (March 2008-April 2009). Our joint models of residential urban 

form, vehicle efficiency choice, and vehicle use account for residential self-selection and 

endogeneity of vehicle preferences in order to explain vehicle miles traveled (VMT) for both 

work and non-work trips. Residential urban form is treated as a latent construct that reflects 

observed variables such as population density, land use diversity and distance to employment 

centers. Our results suggest that in the short run, households drive 0.15% less for all trips and 

0.18% less for non-work trips when gas prices increase by 1%, while work trips are not 

responsive to gasoline price changes. Moreover, the direct effect of residential urban form on 

driving is statistically significant for total and non-work VMT, but it has no impact on work 

trips. We also find that owners of more fuel efficient vehicles tend to be more educated, Asian 

and younger (under 30). Moreover, households in low density neighborhoods are more likely to 

have a higher income, to be older than 65 and either White or Asian; these households tend to 

own more vehicles per driver. Finally, our results show that accounting for the nature of trips is 

important for understanding the short term price elasticity of travel. Keywords: land use; travel 

behavior; structural equation modeling; gasoline prices. 

                                                 
1 Copyright @ 2015 Elsevier Ltd. 
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2.1 Introduction 

How does urban form affect household travel behavior? How much do households adjust their 

travel behavior and vehicle usage in the short-run when gasoline price changes? These questions, 

which are at the forefront of transportation planning and policy debates, have far reaching 

impacts on communities that are highly dependent on automobiles such as Southern California, 

but few studies have analyzed urban form and gas prices together.  The relationship between land 

use  and travel behavior has been the subject of many studies in recent years (e.g., Bagley & 

Mokhtarian, 2002; Boarnet, 2011; Cao, Mokhtarian, & Handy, 2009a, 2009b, 2010; Chao & 

Qing, 2011; De Abreu e Silva et al., 2007; Houston et al., 2014; Lovejoy et al., 2013; 

Mokhtarian & Cao, 2008).  As new mandates such as California’s 2008 Senate Bill 375 have 

directed policymakers to reduce vehicle miles traveled by changing urban form, there have been 

lingering debates about the relative efficacy of land use strategies and pricing strategies in 

reducing travel, but few studies have been able to examine both questions, in large part due to 

the cross-sectional nature of most transportation data sets.   

In this paper, we take advantage of the fact that the 2009 National Household Travel 

Survey (NHTS) 1F

2 was administered during a time of large gas price changes to examine how gas 

prices and land use influence household vehicle miles traveled (VMT). We analyze a southern 

California sub-sample of the 2009 NHTS. As in previous studies (Bagley & Mokhtarian, 2002; 

Boarnet & Crane, 2001; Boarnet, 2011; Brownstone & Golob, 2009; Cervero & Murakami, 

2010; Chao & Qing, 2011; De Abreu e Silva et al., 2007; Gillingham, 2013; J. Hong, Shen, & 

Zhang, 2013; Kim & Brownstone, 2013), we rely on common land use metrics but instead of 

treating them as observed variables that capture urban form, we conceptualize urban form as an 

                                                 
2 U.S. Department of Transportation, Federal Highway Administration, 2009 National Household Travel Survey. 
URL: http://nhts.ornl.gov 
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unobserved (latent) construct characterized by various land use variables in a measurement 

model, which we estimate using confirmatory factor analysis (CFA). This approach 

acknowledges the complexity of measuring urban form and relaxes the assumption that 

observable metrics measure urban form without errors. 

In addition, we analyze separately home-based work trips and non-work trips under the 

starting hypothesis that households have more flexibility to adjust vehicle miles traveled (VMT) 

for their non-work trips when gasoline prices change, whereas most of the literature does not 

take trip purpose into account when analyzing the impacts of gasoline price changes and urban 

form on VMT. Work trips are trips to and from a workplace whereas non-work trips capture all 

other trips including trips for shopping, social and recreational purposes. We investigated travel 

behavior with a finer classification of trip purposes but trip chaining behavior substantially 

complicated the classification of non-work trips so we focus on this simpler classification here. 

This paper is organized as follows. The next section presents a limited review of some 

recent papers to motivate our work.  In Section 3, we present our data before outlining our 

methodology in Section 4. In Section 5, we discuss our results starting with model fit and 

continuing with result interpretation. Finally, in Section 6 we summarize our findings, outline 

limitations of our analyses, and present suggestions for future work. 

2.2 Literature Review 

To motivate our modeling choices and contextualize our results, we first present a brief review of 

selected papers on urban form and travel behavior, highlight some methodological treatments of 

endogeneity in travel behavior research, including structural equation modeling, and finally 

review a few salient papers dealing with travel behavior and gas price elasticity. 
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2.2.1  Urban Form and Travel Behavior  

As indicated in recent reviews (e.g., see Boarnet et al., 2011; Boarnet, 2011; Brownstone, 2008; 

Ewing & Cervero, 2010) most papers concerned with the relationship between urban form and 

travel behavior estimate reduced form models where measures of travel behavior (VMT, transit 

use, walking, trip frequency) are regressed on individual and household socio-demographic 

variables (i.e., age, ethnicity, education level, household income and size) and measures of urban 

form (density, diversity, design, and accessibility) around each household’s residence. A wealth 

of empirical studies report that some features of the built-environment, particularly high density 

and measures of transportation access to employment, are associated with lower vehicle use 

(e.g., see Bento et al., 2005; Brownstone, 2008; Bhat and Guo, 2007; Chen et al., 2008; and 

Fang, 2008).  Based on this literature, the 2009 National Academy of Sciences/National 

Research Council (NAS/NRC) report concluded that the elasticity of VMT with respect to 

population density ranges between -0.05 and -0.12. 

However, as shown by Bento et al. (2005), simultaneous changes on multiple facets of 

urban form can have much larger effects on driving. They analyzed travel diary data from the 

1990 Nationwide Personal Transportation Survey (NPTS) and a variety of urban form measures 

from 114 U.S. metropolitan areas, including population, housing, and jobs distributions, transit 

supply and road density. They found that the magnitude of the elasticity of VMT with respect to 

most measures of urban form is small (0.07 in absolute value) but that the elasticity of VMT 

with respect to comprehensive measures of the built environment could be as large as -0.4 when 

different facets of urban form change jointly. 

Greenhouse gas (GHG) reduction laws such as California Senate Bill 375 have elevated urban 

form and travel behavior research, and particularly questions about the magnitude of the 
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elasticity of driving with respect to urban form, to the center of policy discussions. Regulatory 

mandates assume that urban form has a causal impact on driving behavior, and especially on 

vehicle miles traveled (VMT), but the link between the two remains controversial. Skeptics 

argue that urban form (and the spatial distribution of population in an urban area) is shaped, in 

part, by highway development and that highway expansions are designed to accommodate 

driving, thus blurring the direction of causality, so efforts to understand this relationship 

ultimately need to rely on quasi-experimental research for an unambiguous answer (Baum-Snow, 

2007; Funderberg et al., 2010; Duranton & Turner, 2012). 

Using the 1947 plan for the U.S. National Highway System to instrument for the built 

Interstate Highway System, Baum-Snow (2007) concluded that instead of an 18% decline from 

1950 to 1990, central city population would have increased by 8% if the Interstate Highway 

System had not been built. Duranton and Turner (2012) reached similar conclusions with job 

growth: a 10% increase in highway stock caused a 1.5% growth in employment over 20 years 

(1983-2003). Since new highways created new employment centers outside of traditional city 

centers and given that the increase in highway miles was much larger outside city centers, 

highway expansion did have a causal effect in decentralizing employment away from city 

centers.  Funderburg et al. (2010) provide similar results based on a case study of highway 

expansions in Orange County, California. They find that new highways are associated with 

increases in employment in nearby census tracts on the order of a few thousand new jobs. 

Duranton and Turner (2012) go further, showing that additional highway capacity induces more 

driving. Their results confirm that urban form policies (highway expansion here) have a causal 

impact on driving. 
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However, merely demonstrating the presence of this causal effect is not sufficient to 

justify reshaping urban form to limit VMT as a climate change policy instrument.  Instead, it is 

critically important to correctly measure the elasticity of VMT with respect to urban form 

(Boarnet et al., 2011; Boarnet, 2011; Brownstone, 2008) because underestimating it would 

neglect a potentially important avenue to reduce greenhouse gases, while overestimating its 

value would waste public investments on a large scale. 

Possible sources of bias that plague the travel behavior literature are endogeneity associated 

with residential and vehicle choice self-selection (Bhat & Guo, 2007; Cao et al., 2009a-b; 

Mokhtarian & Cao, 2008). The former implies that travel behavior influences residential 

location, and the latter implies that households select their vehicles (and their characteristics, 

such as fuel efficiency) partly based on their transportation preferences. 

2.2.2 Methodological Response to the Endogeneity Problem in Travel Behavior Research 

Controlling for residential self-selection is important for obtaining unbiased estimates of the 

impact of urban form on travel behavior (Bagley & Mokhtarian, 2002; Boarnet & Crane, 2001; 

Boarnet, 2011; Brownstone & Golob, 2009; Cao et al., 2009a; Kim & Brownstone, 2013; 

Mokhtarian & Cao, 2008). Typical travel diary data, such as collected by the NHTS, surveyed a 

cross-section of households to capture their travel behavior after they chose their residence and 

their vehicles; urban form and vehicle fuel efficiency are not randomly assigned by a clever 

research design, but confounded in travel behavior. Addressing this potential self-selection 

problem is therefore the biggest hurdle in travel behavior research. 

Another self-selection issue that affects driving is vehicle fuel economy (Bhat & Guo, 

2007; Brownstone & Golob, 2009; Fang, 2008; Kim & Brownstone, 2013). Households with fuel 

efficient vehicles are less sensitive to fluctuations in gas prices. Conversely, households who 
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prefer driving may drive vehicles that are more fuel efficient to reduce spending, and may be 

more willing to live in a location that necessitates commuting. Unobserved preferences for 

residential location may thus jointly affect vehicle fuel economy and driving behavior, leading 

Brownstone and Golob (2009) and Kim and Brownstone (2013) to treat residential density and 

vehicle fuel efficiency as jointly-endogenous in their structural models. In addition, households 

may choose their vehicles based on future expectations about gasoline prices. Gillingham (2013) 

argues that households with foresight about fuel prices would buy more efficient vehicles, thus 

creating an additional source of endogeneity in driving behavior models. 

Recent studies suggest that a rich set of socio-demographic controls (which are available 

in  recent travel diary surveys such as the 2009 NHTS) can reduce the bias associated with 

residential self-selection (Boarnet, 2011; Brownstone, 2008; Cao et al., 2009a, 2010). However, 

including a rich set of socio-economic control variables in disaggregated, single equation models 

does not guarantee that households in some neighborhoods do not differ by some unobserved 

trait that affects their travel behavior (Brownstone & Golob, 2009; Kim & Brownstone, 2013). 

The gold standard for addressing this problem with cross-sectional data is to construct a joint-

model of residential urban form and travel behavior (Boarnet & Crane, 2001; Brownstone & 

Golob, 2009; Kim & Brownstone, 2013). 

2.2.3 Structural Equation Modeling and Travel Behavior Research  

In this study, we correct for self-selection by specifying a system of simultaneous equations 

where urban form, vehicle fuel efficiency and household VMT are jointly determined so it is 

useful to review some applications of SEM to travel behavior research. For brevity, we restrict 

ourselves to a few directly relevant papers. Golob (2003) provides a nice review of structural 

equation modeling (SEM) and its applicability to travel behavior research. 
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SEM techniques have often been applied to models of vehicle use and ownership for cross-

sectional data to simultaneously capture the mutual causal effects between vehicle ownership and 

use (Golob, 2003, p. 12). While they endogenized vehicle ownership, many of these studies 

treated land use characteristics/urban form as exogenous and ignored residential self-selection 

issues. Studies that address residential self-selection in travel behavior – urban form interactions 

remain scarce (Van Acker, Mokhtarian, & Witlox, 2014, p. 89), even though strong evidence of 

self-selection bias exists (Cao et al., 2009a; Mokhtarian & Cao, 2008). 

In a SEM framework, residential self-selection can be accounted for by specifying residential 

urban form and measures of travel behavior as jointly-endogenous (Brownstone & Golob, 2009; 

Kim & Brownstone, 2013). However, SEM techniques can only confirm causality claims from 

theoretically informed models. Causality claim should not only satisfy correlation and non-

spuriousness, but also temporality (i.e., cause must precede effect). While spuriousness and 

correlation can be confirmed by testing estimated coefficients, models relying on cross-sectional 

data may not satisfy temporality. To address that problem, a non-recursive model with a 

feedback loop between two endogenous variables can be used to satisfy temporality, although 

identification may be more difficult in such a setting. 

2.2.4 Driving and Gas Price Elasticity 

Since late 1970s US policymakers have been interested in how households adjust their behavior 

in response to changes in real gasoline prices in order to design more effective energy and 

environmental policies (Congressional Budget Office, 2008; Puller & Greening, 1999).  

From aggregate trip frequency and highway traffic data collected in California, the 

Congressional Budget Office (CBO) (2008) concluded that the short-run effect of gasoline price 

changes is small because households do not have time to change their vehicles or to move. They 
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found that in areas with no rail transit, the number of freeway trips declined by 0.7% for every 

$0.50 increase in gasoline prices on weekdays, which is equivalent to an (arc) elasticity of -

0.044. 

To tease out short-run and long-run impacts of gasoline prices on driving and fuel 

consumption, several papers have relied on time series analyses (e.g., see Puller & Greening, 

1999, or Small & van Dender, 2007).  As fuel economy standards increase, people use less fuel 

ceteris paribus. As cars become more fuel efficient, people buy more efficient vehicles and may 

then drive more on a gallon of fuel, leading to the so-called “rebound effect.” 

After summarizing studies focusing on how VMT changes with gasoline prices, Puller & 

Greening (1999) reported elasticities ranging from -0.26 in the short-run to -0.86 in the long-run. 

Results from their two-equation model applied to 9 years of household-level Consumer 

Expenditure Survey (CES) panel data gave a long-run elasticity of non-business gasoline demand 

of -0.35 after accounting for changes in household vehicle stocks. 

Small and van Dender (2007) estimated the elasticity of vehicle miles traveled (VMT) 

with respect to gas price. They found that total driving is not highly responsive to gasoline 

prices: a 1% increase in gasoline prices is expected to reduce driving by only 0.02% to 0.03% in 

the short-run. They partly justified this lack of responsiveness by noting that increases in real 

household income over time have reduced the share of disposable income used for driving. 

Bento, Hughes, & Kane (2013) used a different approach based on weekly traffic flow 

data in High Occupancy Vehicle (HOV) lanes reserved for vehicles with two or more passengers 

in Los Angeles County. Unlike other large U.S. cities, most HOV lanes in southern California 

have permanent restrictions. This allows associating weekly changes in average gasoline prices 
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with changes in traffic flow in these lanes. Their results show that a 1% increase in gasoline price 

implies 1 additional carpool per hour in HOV lanes. More carpools imply less VMT for the same 

level of passenger-miles traveled. 

Also in California, Gillingham (2013) estimated the medium-run elasticity of driving 

with respect to gasoline price based on a 2001-2003 panel of vehicle smog-check data from 

registered vehicles. His quantile regression results reveal the presence of heterogeneity in 

elasticity values, which range from -0.33 to -0.17, with a higher responsiveness for households 

with larger income, perhaps due to within-household vehicle-switching. 

2.3 Data 

2.3.1 NHTS Travel Diary Data 

This paper analyzes geocoded data from a subset of Southern California (Los Angeles, Orange, 

Ventura, San Bernardino and Riverside counties) residents who participated in the 2009 National 

Household Travel Survey (NHTS). The geocoded raw data include the latitude and longitude of 

each household location and travel destination. 

We focus on households that own at least one vehicle, which represents approximately 

96% of households in our NHTS sample and corresponds to 3,752 households; however, because 

of missing income information, our sample size is 3,511. Since this paper investigates how 

households respond to changes in gasoline prices in the short-run, we assume that gas price 

changes do not influence vehicle ownership decisions. 

The 2009 National Household Travel Survey (NHTS), which was conducted from March, 

2008 to April, 2009, includes a one-day diary of all household travel, and collected detailed 

household socio-demographic information. Participating household members were asked to 
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record all of their trips on an assigned day, and to estimate the length of each trip in blocks; each 

block was then converted to 1/8 of a mile to estimate vehicle miles traveled (VMT). We 

construct our dependent variable from these data by summing distance travelled for work and 

non-work trips for each household, taking care not to double count distances when more than one 

household member traveled in the same vehicle. 

2.3.2 Gas Prices 

Fortuitously, the 2009 NHTS covered a period of remarkable gas price variations.  Gas prices 

during the 2009 NTHS survey period varied from a low of $1.75 per gallon on the week of 

December 12, 2008 to a high of $4.46 per gallon on the week of June 20, 2008 (see Figure 2-1).  

The survey period covered the dramatic price increases in late spring and early summer of 2008, 

the price declines of the summer of 2008 (which accelerated rapidly during the onset of the Great 

Recession), and then a period of price rebound and relative price stability from January to April, 

2009.  Importantly, these price changes were almost certainly supply curve shocks: price 

increases likely reflected strong and growing world oil demand, and possibly the effect of 

unfavorable exchange rates versus the U.S. dollar in late spring 2008, while the price declines 

reflected a sudden drop in world demand. These price changes were large and exogenous to 

households, so the NHTS provides travel data for a natural experiment during a period of large 

and rapid gas price changes. 

NHTS gas data are average prices for the week a household was surveyed, which for our 

southern California sub-sample, are the U.S. Energy Information Administration (EIA) weekly 

average for the Western Region of the U.S. 

2.3.3 Measures of Urban Form 

To measure urban form, we used fine-grained geospatial information; our land use variables 
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include population density, land use mix, employment density, distance to employment centers 

and transit availability. Using Geographical Information System (GIS) software, we assigned 

land use characteristics to each household based on residential location.  We relied on 2010 

census data to measure population density at the block group level. As a proxy for employment 

accessibility, we extracted from Census Transportation Planning Products (CTPP) data the 

number of jobs in circles with a 10 miles radius centered on each household’s residence. 

 

Figure 2-1 Gas Prices (in US $) versus Survey Date 
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Land use mix was measured from SCAG’s 2005 parcel level land use data. This 

information is available in GIS, which allowed calculating an index of land use diversity at the 

block group level using the entropy formula (e.g., see De Abreu e Silva, Golob, & Goulias, 

2007) as follows: 
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where Hi is the land use entropy of block group i, and pij is the area’s proportion of land use of 

type j in block group i. SCAG’s land use database stores parcel level land use based on 150 

categories, which we condensed into k=15 major types of land uses.2F

3 

Households with access to transit service have the opportunity to substitute driving with 

transit. While transit is not a perfect substitute for driving, certain conditions (e.g., high gas 

prices or parking constraints) may make transit preferable to driving, depending on trip purpose. 

Households with higher opportunities to use transit are expected to use transit as a substitute 

when gasoline becomes prohibitively expensive. 

Transit service density data were obtained from SCAG’s transit network and from the 

Los Angeles Metropolitan Transit Authority GIS database. The shapefile we received contains 

data about each transit stop, including information on service frequency and connectivity. To 

measure level of service, we aggregated the level of service for each transit stop. By using 

proximity analysis with ArcGIS, we calculated transit service level by aggregating the number of 

                                                 
3 These land uses category are: single family residential, multi-family residential, other residential types (e.g. mobile 
home and trailer parks) commercial and services, industrial, transportation, communication and utilities, public 
facilities such as government offices, schools and libraries, military land uses, mixed development, open space and 
recreational, vacant urban land, agricultural, vacant non-urban land (e.g. abandoned mines), body of water and 
facilities, and other land uses.  
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transit lines within ¼ mile from each household’s residence. We created buffers for household 

residence and measured the aggregated level of service by transit stops located within these 

buffers to capture the extent to which a household has the opportunity to use transit as an 

alternative mode of transportation. Summary statistics for our variables are presented in Table 

2-1. 

Table 2-1 Summary Statistics (N=3,511 Households) 

Variable Mean    Std. dev. Min Max 

Dependent variables     
Log of daily household VMT 2.98 1.85 -2.20 6.14 
Log of daily household work VMT -0.21 2.58 -2.20 5.48 
Log of daily household non-work VMT 2.45 2.10 -2.20 5.87 
Log of vehicle fuel efficiency (miles per gallon)  3.33 0.28 2.60 4.72 

Gasoline price     
Price of gasoline on week of travel  (in $ / gallon) 5.68 0.33 5.17 6.10 

Household characteristics     
Midpoint of annual household income (in $1,000) 62.40 32.22 2.50 100.00 
Household Annual Income is more than $100,000 0.28 0.45 0 1 
Household size 2.85 1.46 1 13 
Number of workers 1.17 0.95 0 5 
Number of children under 16  0.37 0.75 0 5 
Number of persons between 16 and 24  0.26 0.57 0 4 
Vehicles per licensed driver 1.19 0.50 0.25 7.00 

Respondent characteristics     
Age between 16 and 29 0.05 0.22 0 1 
Age between 30 and 44 0.21 0.41 0 1 
Age between 45 and 64 0.47 0.50 0 1 
Age 65 and up 0.27 0.44 0 1 
Education: less than High School 0.07 0.26 0 1 
Education: High School degree 0.18 0.39 0 1 
Education: some college 0.32 0.47 0 1 
Education: Bachelor's degree 0.24 0.43 0 1 
Graduate or professional degree 0.18 0.38 0 1 
White 0.71 0.45 0 1 
Hispanic 0.22 0.41 0 1 
Black 0.05 0.22 0 1 
Asian 0.07 0.26 0 1 
Other ethnicity 0.02 0.14 0 1 

Residential Urban Form Characteristicsa     
Population density (10,000 person/square mile)c 1.27 2.14 0.00 45.34 
Housing units per square mile (thousands) 3.34 3.43 0.05 30.00 
Workers per square mile (census tract; thousands) 1.91 1.69 0.03 5.00 
Percentage of renter occupied housing 0.32 0.27 0.00 0.95 
Land use entropy (diversity index) 0.35 0.16 0.00 0.82 
Transit lines within 0.25 mileb (/100) 0.03 0.14 0.00 5.13 
Inverse distance to nearest sub-center (in 1/miles)b 0.27 0.64 0.01 33.46 

Day of Travel     
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Monday 0.14 0.35 0 1 
Tuesday – Thursday  0.45 0.50 0 1 
Friday 0.14 0.35 0 1 
Weekend (Saturday and Sunday) 0.27 0.44 0 1 

Notes: 
a Measured at the block group level unless stated otherwise. 
b Results from spatial proximity analysis. 
c Extremely low density neighborhoods are found in the Southern California deserts. 

2.4 Methodology 

Like Brownstone & Golob (2009) and Kim & Brownstone (2013), we account for residential 

self-selection effects by specifying a system of recursive simultaneous equations where all causal 

effects are directed at vehicle usage. However, our model specification differs from theirs in 

several ways. First, their endogenous variables are different from ours: they consider total annual 

miles driven by all household vehicles, total annual household fuel usage measured in gallons of 

gasoline equivalents per year, and housing units per square mile in Census block group; in 

contrast, our endogenous variables are the log of VMT by the household on the survey day, the 

log of the fuel efficiency of the most efficient household vehicle, and urban from. Second, we 

treat urban form as a latent variable, which is obtained using a measurement modeling approach. 

Third, we estimate separate models for work trips and for non-work trips to explore the price 

sensitivity of households for different trip purposes, which Brownstone & Golob (2009) and Kim 

& Brownstone (2013) did not do. Moreover, our model allows directly estimating the short-run 

elasticity of driving with respect to gasoline price via one of our structural equations. 

Our generalized SEM model is therefore comprised of a structural component and a 

measurement component. The former models the relationship between our endogenous variables 

using simultaneous equations where the direction of causality is explicitly specified (Acock, 

2013; Bollen, 1989; Kline, 2005). The measurement component accounts for how our latent 

construct (urban form) is measured by observed variables; it is estimated via confirmatory Factor 
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Analysis (CFA) jointly with the structural component using quasi-maximum likelihood. 

 

For each trip purpose, our model can be written as follows (vectors and matrices are in 

bold; n is the sample size; and k is the number of household explanatory variables):  
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where: 

 v is an n×1 vector of the logarithm of household VMT and v* is the associated latent 

tobit variable; 

 m is an n×1 vector of the logarithm of vehicle fuel efficiency (in mpg); for simplicity, 

vehicle fuel efficiency is represented by the most fuel efficient vehicle in the household; 

 f is an n×1 vector of urban form latent variables; 

 g is an n×1 vector of the logarithm of gasoline prices; 

 X is an n×k matrix of k household explanatory variables; 

 1, 2, and 3 are n×nk matrices.  j 1  ... j jk  n nΓ I I  for j{1,2,3}, with ji  the jis 

are unknown coefficients to estimate, and In is the n×n identity matrix; we imposed 

additional restrictions on the js to over-identify the model: like Brownstone and Golob 
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(2009), we removed non-significant household explanatory variables from the VMT and 

urban form equations. As a result, education variables are present only in the vehicle 

selection equation, where they serve as weak instruments for vehicle selection. 

 u is a (7n)×1 vector of stacked variables for residential urban form, which includes 

population density, housing unit density, employment density, % of renter occupied 

housing, land use entropy, inverse distance to the nearest sub-center3F

4, and transit access; 

 u is an (7n)×n matrix given by  u 1 7...  n nΛ I I , with i  (i{1,…,7}); 

 The si  for i{1,2,3} and  are respectively n×1 and 7n×1 error vectors; and  

 , 12, , 13, 23, ji (j{1,2,3}, i{1,…,k}, in j), and i (i{1,…,7} in u) are unknown 

model parameters to estimate; like SEM, generalized SEM minimizes the difference 

between the sample covariance and the covariance predicted by the model (Bollen, 1989). 

 

2.4.1 Structural Component 

The first three equations in (2) and equation (3) represent the structural component of our model, 

whose structure reflects causal paths (see Figure 2-2). In this component, v (and v*), m, and f are 

vectors of endogenous variables, X is a matrix of exogenous household characteristics, and , 

12, , 13, 23, ji (j{1,2,3}, i{1,…,k}, in j) are structural parameters. 

In the third equation of (2), residential urban form (f), which is an endogenous latent 

construct, is assumed to be selected by households based on their characteristics prior making 

travel decisions. In the second equation, the log of vehicle fuel efficiency (m) is explained by 

                                                 
4 The distance to sub-centers accounts for the polycentric nature of Southern California’s urban structure, which has 
multiple employment centers. For detailed explanations of how sub-centers are determined, see Lee (2007) who 
analyzed sub-centers in Los Angeles and other major metropolitan areas. 
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residential urban form and by household characteristics. In the first equation, the log of vehicle 

miles traveled (v) is explained by the log of gas prices, the log of vehicle efficiency, residential 

urban form, and household characteristics. 

 

Figure 2-2 Model Structure 

We therefore have a recursive system with all causality paths directed at vehicle usage; since 

we also assume the si  to be uncorrelated, our model is guaranteed to be identifiable (Bollen, 

1989, pp. 95–98; Kline, 2005, pp. 105–107). In SEM, identification requires at least as many 

observations as free model parameters (df > 0) and every latent variable/construct must be 

assigned a scale (Bollen, 1989, pp. 103–104; Kline, 2005, p. 105). 



25 
 

2.4.2 Measurement Component for Urban Form 

The fourth equation is the measurement component of our model, which defines residential 

urban form as a latent construct that depends on population density, housing unit density, 

employment density, % of renter occupied housing, inverse distance to the nearest sub-center, 

land use entropy and transit access. These variables are stored in the vector u. Moreover, u is a 

matrix of measurement coefficients obtained by confirmatory factor analysis (CFA). 

The treatment of residential urban form as a latent construct merits explanation. Since home 

based trips originate from residences, the surrounding land use patterns capture the configuration 

of potential activities that could influence travel behavior in general and driving in particular.  

Although this relationship is abstract, has no natural scale, and is partly unobservable, it can be 

characterized by variables such as land use entropy, density, transit access and distance from 

employment centers so it can be modeled as a latent variable or construct (Bollen, 1989, p. 180). 

As noted by Bollen (1989) abstract constructs have long been a part of many disciplines 

including quantum physics, biology, medicine, psychology, sociology, and thermodynamics 

(e.g., temperature is a latent variable measured by the height of a column of mercury). 

Conceptualizing urban form as a construct has been under-explored in the travel behavior 

literature (Golob, 2003; Van Acker et al., 2007; van Wee, 2009) where urban form is often 

proxied by density. 

Based on findings from our literature review, we started with a simple CFA measurement 

model with correlations of measurement errors () restricted to zero. Following the SEM 

literature (Bollen, 1989, pp. 233–235, 296–305; Kline, 2005, pp. 176–191), we then modified 

our starting model after reviewing its fit to allow for theoretically justifiable correlated 

measurement errors  for population density, residential density, land use entropy (diversity), 
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employment density, proportion of renter-occupied housing units, transit access and distance 

from employment sub-centers, to reflect that places with high population density tend to have a 

more diverse land use mix, employment density and transit access. For this model to be 

identified, we scaled 1 (the coefficient of population density) to 1, which scales urban form to 

population density (in deviation scores), after correcting for correlations of population density 

with other variables reflecting urban form. 

2.4.3 Model Interpretation 

To discuss our results, we rely on elasticities whenever appropriate. For the first equation in (2), 

we rely on the expression of the elasticity for a tobit model (Wooldridge, 2002, p. 522): 

   ( | , 0)
1 ( ) ( ) ,j

jx
 
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

v X v
λ w w λ w  (4) 

where v is the vector of log(household VMT); xj is a log-transformed right hand-side variable; j 

is the model parameter of xj; 12 13 1( ) /      w g m f Γ X , where  is the standard 

deviation of 1;  and ( ) ( ) / ( ) λ w w w  is a vector of inverse Mills ratios. This expression is 

readily adapted when xj is not a log transformed variable. 

2.5 Results  

We estimated the model described above for total household trips, work trips, and non-work trips 

using quasi-maximum likelihood, the approach Stata 13.1 resorts to when the variance 

covariance matrix of the estimators is calculated using the Huber-White-Sandwich estimator. We 

chose that option because it relaxes the assumption that errors are identically and normally 

distributed, and requires only that errors be independently distributed. Results are presented in 

Tables 2-3 (A)-(B); they are discussed after addressing model fit (Table 2-2).
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Table 2-2 Fit Statistics for the Urban Form Measurement Model 

 2 [df] (p‐value)a 2/dfa CFIb TLIc RMSEAd

Critical values p> 0.05  < 5 > 0.95 > 0.95 < 0.05 

Urban Form Measurement Model      

Model without correlated errors 862.74 [14] (<0.001) 61.62 0.85 0.77 0.13 

Model with correlated errors 14.41 [6] (0.03)   2.40 1.00 0.99 0.02 

Notes: 

a. The chi-square (χ2) statistic or chi-square goodness of fit, measures whether the observed covariance matrix is similar to the covariance matrix 
predicted by the model: if it is not significant, the model is regarded as acceptable. With small samples, the χ2 statistic lacks power so some 
researchers have proposed the relative chi-square (χ2 divided by the number of degrees of freedom, denoted here by χ2/df). 

b. The Comparative Fit Index (CFI) is an incremental fit index, which has been shown to have good power and robustness (Iacobucci, 2010, p. 
97). It ranges from zero (worst fit) to one (best fit), where values above 0.97 indicate good fit and values between 0.95 and 0.97 denote acceptable 
fit (Schermelleh-Engel et al., 2003, p. 42). 

c. The Tucker-Lewis Index (TLI) compares χ2/df of the proposed model to χ2/df for a null model; it is interpreted like the CFI (Schermelleh-Engel 
et al., 2003, p. 41). 

d. The root mean square error of approximation (RMSEA) estimates the amount of error of approximation per model degree of freedom while 
taking sample size into account. A RMSEA value under 0.03 suggests excellent fit, and a value between 0.05 and 0.03 is considered good (Kline, 
2005, p. 139). 
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2.5.1 Model fit 

Model fit in SEM refers to the ability of a model to reproduce the observed variance-covariance 

matrix. A number of fit statistics have been developed for SEM but they typically do not carry 

over to Generalized SEM (GSEM) because common fit statistics depend on the assumptions that 

observed endogenous, observed exogenous, and latent endogenous variables are jointly normally 

distributed, which clearly does not hold for binary or censored variables. We therefore report 

only common fit statistics for our residential urban form measurement model (see Table 2-2). 

Table 2-2 show five common fit statistics. The chi-square (χ2) statistic measures whether 

the observed covariance matrix matches the model covariance matrix: if the χ2 statistic is not 

significant, fit is deemed acceptable. Unfortunately, with small samples, the χ2 statistic lacks 

power, and in large samples, it tends to over reject (Iacobucci, 2010, pp. 91, 95; Schermelleh-

Engel et al., 2003, pp. 31–33). To remedy these problems, some researchers have proposed the 

relative χ2, i.e., χ2 divided by the number of degrees of freedom (denoted by χ2/df in Table 2). 

A notable disadvantage of the χ2 statistic is that it decreases with additional model 

parameters, which tends to favor models with many parameters (Schermelleh-Engel et al., 2003, 

p. 33). To avoid this shortcoming, incremental fit indices, which are not sensitive to sample size 

and penalize for over-parameterization, have been developed. We report here the Comparative 

Fit Index (CFI), which has been shown to have good power and robustness (Iacobucci, 2010, p. 

97). The CFI ranges from 0 (worst fit) to 1 (best fit), where values 0.97 indicate good fit and 

values between 0.95 and 0.97 denote acceptable fit (Schermelleh-Engel et al., 2003, p. 42). We 

also report the popular Tucker-Lewis Index (TLI), which compares χ2/df of the proposed model 

with χ2/df for a null model. The TLI is interpreted like the CFI (Schermelleh-Engel et al., 2003, 

p. 41). 
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Finally, we report the root mean square error of approximation (RMSEA), which 

estimates the amount of error of approximation per model degree of freedom while taking 

sample size into account. A RMSEA value of zero implies exact fit, a value under 0.03 suggests 

excellent fit, and a value between 0.05 and 0.03 is considered good (Kline, 2005, p. 139). 

Table 2-2 shows that our residential urban form measurement model with correlated 

errors performs well, compared to our starting residential urban form measurement model with 

correlated errors, because it satisfies the criteria of all five shown fit indices. 

2.5.2 Results Interpretation 

SEM decomposes the mediating effect of residential selection on travel behavior by estimating 

direct, indirect, and total effects of endogenous and exogenous variables. Here, direct effects 

refer to how household characteristics directly influence VMT, and indirect effects, which can be 

interpreted as sorting (self-selection) effects, capture how they influence VMT through 

residential choice (Golob, 2003). Total effects are the sum of direct and indirect effects. 

Before starting our overview of direct effects, we need to mention that all seven urban 

form variables considered for the latent urban form variable have highly significant coefficients 

(<0.001) and are positively correlated with the urban form latent variable (except for entropy), so 

higher densities (population, employment and residential) with more renters and better transit 

accessibility all contribute to a higher value of the urban form latent variable (coefficients are 

omitted for brevity). To better link our discussion with Tables 2-3 (A)-(B), the value of the 

estimated coefficient of a variable discussed is provided in parentheses with its significance 

level. 
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Table 2-3 (A) GSEM Structural Model Coefficients / Direct Effects 

 
Direct Effects 

Household VMT Vehicle  Residential  

All Trips Non-Work trips Work trips Selection Selection 

Exogenous  ↓ |  Endogenous → Log(total VMT) Log(non-work VMT) Log(work VMT) Log-MPG Res. Urban Form 

Residential Urban Form -0.140*** -0.142*** -0.051* 0.009** - - 

Log(Vehicle fuel efficiency) 0.105 0.179 0.007 - - - - 

Log(Price of gasoline) -0.186** -0.265*** 0.006 - - - - 

Household characteristics      

Midpoint of annual HH income  0.012*** 0.011*** 0.000 0.000 -0.011*** 

Annual Income is > $100,000 -0.274*** -0.220** 0.011 0.011 0.060 

Household size -0.003 0.093** 0.004 0.004 -0.183*** 

Number of workers 0.511*** 0.242*** 1.203*** - - - - 

Number of children under 16  0.073 0.070 0.066 - - -0.045 

Number of persons between 16 and 24  0.191*** 0.356*** -0.036 - - - - 

Vehicles per licensed driver 0.115 0.114 -0.055 - - -0.438*** 

Respondent characteristics      

Age: 16 to 29 -0.085 -0.027 -0.132 0.044** 0.797*** 

Age: 30 to 44 -0.032 -0.214** 0.021 -0.003 0.415*** 

Age: 65 and up 0.007 0.274*** -0.395*** 0.013 -0.499*** 

Hispanic -0.116 -0.334*** 0.259** 0.005 0.526*** 

African American 0.018 -0.149 0.112 -0.022 0.590*** 

Asian  0.136 -0.050 0.327** 0.067*** 0.045 

Other ethnicity 0.151 0.341 -0.262 0.006 0.134 

Education: High School degree  - -  - -  - - 0.018  - - 

Education: some college  - -  - -  - - 0.013  - - 

Education: Bachelor's degree  - -  - -  - - 0.055***  - - 

Graduate or professional degree  - -  - -  - - 0.109***  - - 

Day of Travel:       

Monday -0.039 -0.102 -0.166 - - - - 

Friday 0.015 0.099 -0.205* - - - - 

Weekend  -0.504*** 0.023 -1.885*** - - - - 
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Table 2-3 (B) Indirect and Total Effects  

 Log(total VMT) Log(non-work VMT) Log(work VMT) 
 Indirect Effects Total Effects Indirect Effects Total Effects Indirect Effects Total Effects 
Residential Urban Form 0.001 -0.139*** 0.001 -0.140*** 0.000 -0.051** 

Log(Vehicle fuel efficiency) - - 0.105 - - 0.179 - - 0.007 

Log(Price of gasoline) - - -0.186* - - -0.265*** - - 0.006 

Household characteristics       

Midpoint of annual household income 0.002 0.013*** 0.001 0.012*** 0.000 0.000 

Annual Income > $100,000 -0.007 -0.281*** 0.006 -0.214** 0.002 0.013 

Household size 0.026 0.023 0.022 0.118*** 0.009 0.013 

Number of workers 0.000 0.511*** 0.000 0.242*** 0.000 1.203*** 

Number of children under 16 0.006 0.079 0.002 0.073 0.001 0.067 

Number of persons between 16 and 24  0.000 0.191** 0.000 0.356*** 0.000 -0.036 

Vehicles per licensed driver 0.061 0.176*** 0.051 0.172*** 0.021 -0.034 

Respondent characteristics       

Age: 16 to 29 -0.107 -0.192 -0.068 -0.107 -0.032 -0.164 

Age: 30 to 44 -0.058 -0.090 -0.050 -0.270*** -0.020 0.001 

Age: 65 and up 0.071 0.078 0.047 0.325*** 0.018 -0.377*** 

Hispanic -0.073 -0.189** -0.061 -0.403*** -0.025 0.234*** 

African American -0.085 -0.067 -0.102 -0.263** -0.040 0.072 

Asian 0.001 0.137 -0.005 -0.059 -0.007 0.320*** 

Other ethnicity -0.018 0.133 -0.015 0.324* -0.006 -0.268 

Education: High School degree 0.002 0.002 0.002 0.002 0.000 0.000 

Education: some college 0.001 0.001 0.001 0.001 0.000 0.000 

Education: Bachelor's degree 0.006 0.006 0.010 0.008 0.000 0.000 

Graduate or professional degree 0.011 0.011 0.022 0.018 0.001 0.001 

Day of Travel       

Monday - - -0.039  -0.124 - - -0.166 

Friday - - 0.015 - - 0.090 - - -0.205** 

Weekend - - -0.504*** - - -0.005 - - -1.885*** 

Note: * p-value0.1, ** p0.05, *** p0.01 
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2.5.2.1 Direct effects 

Let us first discuss coefficient estimates for the first equation in (2), which explains VMT. One 

of our main results from Table 3A is that the elasticity of VMT with respect to gas prices (based 

on Equation (4)) equals -0.15 (p-value=0.01) for all trips, -0.18 for non-work trips (p-

value=0.01), but it is not significantly different from 0 for work trips. Overall, the value of the 

elasticity of total VMT with respect to gas price is consistent with previous studies (e.g., see 

Small & Dender, 2007, p. 22). 

Vehicle fuel efficiency does not seem to affect VMT for work trips in the short run. 

However, urban form does; its effect on VMT is relatively small but it depends on trip-purpose 

as non-work trips (-0.142***) are slightly more sensitive to urban form than total trips (-

0.140***) and clearly more than work trips (-0.051*). Because population density is negatively 

correlated with distance to job centers, a higher population density implies a closer proximity to 

job centers and thus work trips require less driving. 

Annual household income appears to increase total VMT (0.012***) and non-work VMT 

(0.011*) only mildly, but it does not seem to affect work trips VMT. We note, however, that 

households in the highest income category tend to drive less, which is somewhat surprising. 

Household composition plays different roles for different trip purposes. Households with 

more workers and young adults drive more overall (0.511*** and 0.191***) and the former have 

substantially more non-work trip miles (1.203***). 

Age groups are also predictive of travel behavior. Compared to households in the 45-65 

age group, households older than 65 tend to drive more for non- work trips (0.274***) and less 

for work trips (-.0.395***) likely because they have reached retirement age. Conversely, 
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households in the 30-44 age group tends to drive less for non-work trips (-0.213**), but their 

work VMT is not significantly different from the work VMT of the 45-65 baseline age group. 

Ethnicity also appears to play a role in explaining VMT. Compared to a White household, 

a Hispanic household with similar characteristics tends to drive less for non-work trips (-

0.334***), but more to reach work (0.259**). Moreover, Asian households tend to drive more to 

reach work (0.327**), but their non-work VMT are statistically indistinguishable from the non-

work VMT of comparable White households. There are also no statistically significant 

differences in VMT between African American and White households. 

Relatively few variables are statistically significant in the vehicle fuel efficiency equation 

(second from last column in Table 2-3 (A)). First, urban forms with a larger index (i.e., denser) 

foster the selection of more fuel efficient vehicles, but only mildly. Second, we see that younger 

adults (0.044**) and Asian households (0.067***) are more likely to choose more fuel efficient 

vehicles, while African American, Hispanic, and White households have statistically similar 

vehicle fuel efficiency preferences. Importantly, results also show that education status is 

important for understanding preferences for more fuel efficient vehicles as households with more 

education (i.e., BS/BA or higher) are more likely to own vehicles that are more fuel efficient. 

A number of variables impact how households select the urban form around their residence (last 

column of Table 3A). First, we see that households with higher incomes tend to choose 

neighborhood with a lower urban form index (-0.011***), which is not surprising because higher 

income neighborhoods tend to have large lot houses.  Likewise, larger households prefer 

neighborhoods with a lower urban form index (-0.183***), and so do households with a vehicle 

to licensed drivers ratio (-0.438***). Age seems especially important as younger adults 0.797*** 

for the 16 to 29 group and 0.415***) prefer urban forms with a higher index that the 45 to 64 
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baseline group, whereas the reverse holds for older households (-0.499***). Ethnicity also 

matters as Hispanic (0.526***) and African American (0.590***) households tend to live in 

areas with a larger urban form index, while Asian and White households seem to have similar 

residential urban form preferences. 

2.5.2.2 Indirect and Total Effects 

Table 2-3 (B) reports indirect and total effects of socio-economic and demographic variables on 

VMT, vehicle fuel efficiency, and urban form selection. Indirect effects refer to how socio-

economic variables affect driving through residential self-selection and vehicle fuel efficiency 

selection. 

The most important message from this analysis is that the indirect effects of residential 

urban form on VMT through vehicle efficiency choices are not statistically significant. A 

comparison of the magnitude of direct and indirect effects shows that while self-selection may 

exist, its size has at best a small impact on total effects. 

2.6 Conclusions 

This paper presents a generalized SEM model that jointly explain residential urban form, vehicle 

efficiency choice, and vehicle use while accounting for residential self-selection and endogeneity 

of vehicle preferences in order to explain vehicle miles traveled (VMT) for both work and non-

work trips. Residential urban form is treated as a latent construct that reflects observed variables 

such as population density, land use diversity and distance to employment centers. 

First, our results show that trip purpose matters: in the short run, households drive 0.15% less for 

all trips and 0.18% less for non-work trips when gas prices increase by 1%, while work trips are 

not responsive to gasoline price changes. Second, the direct effect of residential urban form on 
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driving is statistically significant for total and non-work VMT, but it has no impact on work 

trips. Third, the indirect effects of residential urban form on VMT through vehicle efficiency 

choices are not statistically significant. 

Our research is not without limitations. In the 2009 NHTS data we analyzed, trip miles 

were calculated based on self-reported origin and destinations. Ideally, GPS devices should be 

deployed to accurately measure actual VMT. 

Future work could consider intra-household vehicle substitution behavior where 

household with multiple vehicles may choose to drive different vehicles in respond to price 

changes. A natural follow up would be to explore more in depth how household adjust their 

travel behavior in response to increase in gasoline prices (do they organize their trips differently, 

forego travel altogether, or do they use other modes?). Another area of improvement would be to 

refine the residential-selection component by exploring how households choose neighborhoods 

based on amenities such as local public school quality as well as physical features of the 

neighborhood. 

Finally, the next iteration of this paper will explore the modeling value of representing 

urban form by a latent variable by contrasting current models with simplified models where 

urban form is replaced by population density. 
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3 Incentives to Promote Household Ownership of Alternative Fuel Vehicles: 
Effectiveness and Unintended Effects 

California, where transportation accounts for over half of ozone precursors and particulate matter 

emissions, as well as nearly 40 percent of greenhouse gas emissions, has adopted the ambitious 

goal of reducing petroleum use in transportation by 50 percent by 2030. One of the proposed 

strategies to achieve this goal is to increase the share of alternative fuel vehicles (AFVs) on the 

road. In California, incentives to foster the addition of AFVs include the removal of occupancy 

requirements to access HOV lanes, parking privileges and workplace charging facilities for 

Hybrid Electric and Electric vehicles. Although popular, the effectiveness of these incentives is 

not well known. In addition, they may induce additional driving due to AFVs lower variable 

driving costs. To start answering these questions, this paper analyzes the 2012 California 

Household Travel Survey using a generalized structural equation model that accounts for 

residential self-selection, household demographic characteristics, and environmentalism. My 

findings suggest that, households who live closer to a freeway with HOV lanes, work closer to 

parking lots with AFV privileges, and are likely to support pro-environmental measures are more 

likely to own AFVs. However, these households are also likely to drive more than if they had 

conventional vehicles. Comparison between direct and total effects suggests that while expansion 

of HOV lanes (OR=1.004**) and parking incentives (OR=1.017***) will increase the adoption 

of alternative fuel vehicles, its utilization will also increase although the effect is relatively small. 

On average, a household moving 1 mile closer to an HOV lane would induce driving by an 

additional 0.12 miles per month. Working 10 miles closer to a parking lot with AFV privileges 

would induce a household to drive an additional 0.51 miles per month. These results imply that 

HOV and parking incentives comes with unintended consequences. Increasing awareness about 
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environmental problems might yield higher policy pay-off. Keywords: Alternative fuel vehicles; 

Generalized Structural Equation Modeling; Incentives; HOV access. 

3.1 Introduction 

As in many other parts of the country, transportation accounts for over half of ozone 

precursors and particulate matter emissions, and for nearly 40 percent of greenhouse gas 

emissions in California (CA Governor Executive Order No. B-16, 2012). To reduce the local, 

regional and global air pollution from transportation, California has decided to reduce its 

transportation petroleum use by 50% by 2030. One key strategy to achieve this ambitious goal is 

to increase the share of alternative fuel vehicles (AFVs) on the road, an approach that has also 

been adopted in Europe, for example (Tscharaktschiew, 2015). In this study, only vehicles 

eligible for Clean Air Vehicle decals (which waive the occupancy requirement for accessing high 

occupancy vehicle (HOV) lanes on freeways) are classified as AFVs. 

However, expanding the market share of AFVs is no trivial task. First, because they rely 

on new technologies and are typically produced is smaller numbers, AFVs tend to cost more than 

conventional vehicles (i.e., vehicles with internal combustion engines). Second, the refueling and 

maintenance infrastructure for some AFVs (i.e., electric or hydrogen vehicles) is currently 

lacking, which is a major impediment to their adoption. And third, potential buyers may have 

questions about the reliability, the durability, and the maintenance costs of some AFVs. 

To overcome these obstacles, a few incentives have been put in place by federal, state, 

and local governments (Gallagher & Muehlegger, 2011; Diamond, 2008, 2009; Sallee, 2011; 

Sierzchula, Bakker, Maat, & van Wee, 2014; Beresteanu, & Li, 2011; Greene, Patterson, Singh, 

& Li, 2005; Shewmake & Jarvis, 2014; Shewmake, 2012; Kwon & Varaiya, 2008). In addition to 
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various subsidies, the adoption of AFVs has been encouraged by operational (non-monetary) 

incentives. In California, the Clean Air Access program was designed to promote the adoption of 

AFVs by offering eligible vehicles access to High Occupancy Vehicle (HOV) lanes without 

occupancy requirement (Shewmake & Jarvis, 2014; Shewmake, 2012). When it was introduced 

in 2004, the rationale was that offering access to underutilized HOV lanes would be a zero-cost 

incentive that could boost AFV sales. However, there is no consensus about the overall 

effectiveness of California’s HOV access program, which was originally introduced to encourage 

carpooling (Shewmake & Jarvis, 2014; Shewmake, 2012; Kwon & Varaiya, 2008). Parking 

incentives have also been offered to AFV drivers, either in the form of cheaper parking in 

preferred locations, or as free or discounted fuel (for electric and hydrogen vehicles).  

One drawback of these incentives, however, is that they might induce additional driving 

since AFVs have lower variable costs, as shown for fuel efficient vehicles (e.g., see Puller, & 

Greening, 1999; Small & Van Dender, 2007). This would offset some of the environmental 

benefits of AFVs even if AFVs run mostly on renewable energy sources.  

In this context, the goal of this paper is to analyze vehicle choice decisions at the 

household level to understand how they responded to incentives (HOV access and parking 

privileges). More specifically, using data from the 2012 California Household Travel Survey, I 

estimated a generalized structural equation model that explains the number of AFVs owned by 

households based on their socio-economic characteristics, their environmental views (proxied by 

voting data on environmental proposals), and incentives (HOV access and parking privileges) 

while endogenizing residential location (proxied by residential density) and vehicle utilization. 
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3.2 Literature Review 

To select my model variables, motivate modeling framework and contextualize the 

results, I will review selected papers on vehicle ownership, political environmentalism, and 

incentives for AFVs. 

3.2.1 Vehicle Ownership Modeling 

Studies concerned with AFVs began to emerge after AFV incentive policies and 

programs were introduced in the early 1990s. At the Federal level, the 1990 Clean Air Act 

Amendments first allowed waiving the occupancy requirement of high-occupancy vehicle 

(HOV) lanes for low-emission and energy-efficient vehicles. The Transportation Equity Act for 

the 21st Century (TEA-21) expanded these measures by providing incentives for the purchase of 

low-emission and energy-efficient vehicles before the Safe, Accountable, Flexible, and Efficient 

Transportation Equity Act (SAFETEA-LU) broadened the set of HOV eligible vehicles. 

Several papers relevant to my study are part of the rich empirical literature on vehicle 

choice. Recent papers (Bhat & Guo, 2007; Fang, 2008; and Salon, 2009) have proposed 

extensions of classical discrete choice models, by endogenizing household residential 

neighborhood characteristics as well as vehicle utilization. 

In the first paper to control for residential self-selection in a transportation cross-sectional 

study, Bhat & Guo (2007) estimated a mixed-logit model on San Francisco Bay Area data to 

understand the impact of the built environment on travel behavior. They assumed that Traffic 

Analyzes Zone (TAZ) capture the characteristics of residential neighborhoods and that 

households select their vehicles based on make, model and fuel-efficiency. However, vehicle 

utilization was assumed to be exogenous, which desensitized vehicle use from policies. They 
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found that density and other built environment attributes affect residential location as well as 

vehicle ownership. In addition, both household and built environment characteristics influence 

household vehicle ownership decisions. Income is the most important factor in residential sorting 

as low income households may choose (or are constrained to) high density neighborhoods that 

make low-cost commuting possible, impacting the number of cars they own. Finally, they 

reported that a well-specified model with extensive socio-demographic and neighborhood 

characteristics can adequately account for residential and vehicle choice endogeneities. 

Fang (2008) was interested in household preference for fuel-efficient vehicles. She 

estimated her model on the California sub-sample of the 2001 National Household Travel Survey 

(NHTS) without additional land use or location data, which prevented her from considering 

residential location. She captured residential characteristic through residential density and 

regional indicators such as rail availability, location in a regional MSA (Los Angeles MSA, San 

Francisco MSA, etc.), and a rural/urban indicator. To account for residential self-selection and 

vehicle choice endogeneity, she developed a Bayesian Multivariate Ordered and Tobit model to 

jointly estimate the influence of residential characteristics on vehicle fuel efficiency and use. Her 

results suggest that residential density affects vehicle ownership choices; households who live in 

high density neighborhoods are less likely to own trucks. Increasing density is also associated 

with the likelihood of owning no vehicle. Moreover, higher density implies less driving, both for 

cars and trucks.  

Salon (2009) estimated a multinomial logit model to jointly explain residential selection, 

vehicle ownership (total holding), and commuting mode on New York City data, with a focus on 

household modal-choice. Due to computational limitations, she assumed that work location is 

exogenous. Like Fang (2008) and Bhat & Guo (2007), she found that population density has a 
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substantial impact on vehicle ownership; in her study, living farther from midtown Manhattan 

increases the utility of car ownership while higher density has an opposite effect. 

These studies, however, did not consider the effectiveness of specific energy and 

environmental policies. Furthermore, as noted by Choo and Mokhtarian (2004), vehicle choice 

studies should consider attitudes, environmental beliefs, lifestyle, and/or personality 

characteristics if this information is available. 

3.2.2 The Role of Environmentalism  

Several studies have examined how political environmentalism may explain AFV 

ownership. In this paper, environmentalism broadly refers to the belief that the government has 

an important role to play in improving environmental quality. See Kahn (2007) for an overview 

of environmentalism and market behavior or Guber (2003) for a comprehensive discussion. 

Political environmentalism was either proxied by membership in an environmental organization 

or reflected in survey responses about environmental issues and the role of government. 

Kahn (2007) estimated a negative binomial count regression model for various types of 

vehicles on a 2005 proprietary vehicle registration dataset for Los Angeles County. He found 

that, controlling for income, population size, population density and racial mix, a higher share of 

registered Green Party voters - a proxy for environmentalism - is positively associated with a 

higher demand for hybrids electric vehicles (HEVs) at the census tract level. 

Studies of sales and market share analyses at the State-level (Sallee, 2011) and in 

Virginian counties (Diamond, 2008) found results similar to Kahn (2007). While primarily 

focused on the role of incentives, Gallagher & Muehlegger (2011) examined whether the 

adoption of HEVs correlates with environmental and energy security preferences. They proposed 
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using state-level Sierra Club membership per capita as a proxy for environmentalism and relied 

on this approach to explain sales of HEVs per capita, without accounting for incentives. Their 

result suggests that an increase in Sierra Club membership increases the sales of HEVs. 

Diamond (2008) primarily analyzed the impact of HOV incentives on HEV ownership in 

Virginia. His regression model controls for the share of Green Party votes (a proxy for 

environmentalism) in explaining county-level HEV market share. His results show that the 

number of Green Party votes is positively associated with the market share of HEVs. 

Aggregate level studies, however, do not consider household heterogeneity. Although 

Kahn (2007) explicitly assumed that households tend to Tiebout-sort into “like minded” 

communities, it is not clear that census tracts spatially delineate communities. Moreover, using 

statistical inferences based on aggregate data to examine the effectiveness of AFV policies and 

incentives assumes that household’s AFV ownership decision can be deduced from spatially 

aggregated unit where households reside (also known as an ecological fallacy). Furthermore, 

aggregate data typically do not allow controlling for residential location, which has been shown 

to affect travel behavior and vehicle ownership decisions (Fang, 2008; Salon, 2009; Dillon, 

Saphores, & Boarnet, 2015; Brownstone, 2008; Brownstone & Golob, 2009; Kim & 

Brownstone, 2013). 

3.2.3 The Role of Incentives  

Among incentives that can influence a household to purchase a HEV, I can distinguish 

between financial incentives that offset the purchase price of a vehicle, and operational 

incentives such as occupancy exemptions for accessing HOV lanes or parking privileges in urban 

areas. AFV incentives were designed to stimulate consumer demand and create a viable market 

for AFV manufacturers. This second-best government intervention can be justified on 
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environmental and energy independence grounds. While skeptics may argue that manufacturers 

may capture an excessive share of these incentives, voters may favor these incentives for 

environmental reasons. Furthermore, the literature shows that consumers can benefit from 

incentives that promotes higher fuel efficiency. Consumers captured a significant share of tax 

benefits and of the cash-for-clunkers program (Diamond, 2009; Beresteanu, & Li, 2011). 

Diamond (2009) analyzed a state-level panel that covers substantial variations in gasoline 

prices. Using a fixed-effect model, he found that gasoline prices crowd out incentives and that 

HOV access has a stronger effect than financial incentives. This finding is consistent with 

Beresteanu & Li (2011) who analyzed 2001 NHTS data and proprietary vehicle sales data. 

Gallagher & Muehlegger (2011) used quarterly national vehicle sales to evaluate the 

relative efficacy of state sales tax waivers, income tax credits, and non-tax incentives (HOV 

access) on HEV market penetration. They reported that even though state sales tax waivers tend 

to be less generous than state income tax credits, the mean sales tax waiver (valued at $ 1,077 in 

2011) is associated with three times the increase in sales of the mean income tax credit. Note, 

however, that only four states offered sales taxes waivers for AFVs. Gallagher & Muehlegger 

(2011) also found that the HOV access program is positively correlated with HEV sales in 

Virginia but little evidence that opening HOV lanes to HEVs has a positive impact on HEV sales 

in other states. 

While not specifically focused on HEVs, Greene et. al (2005) analyzed 2,000 sales data 

to quantify the impact of ‘feebates’ (fees and rebates) on vehicle fuel economy. Feebates are a 

market-based alternative in which vehicles with fuel consumption rates above a “pivot point” are 

charged fees while vehicles below receive rebates. They concluded that the clear majority of fuel 

economy increase is due to the adoption of fuel economy technologies rather than shifts in sales. 
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3.3 Data 

To understand how vehicle choice decisions at the household level respond to incentives 

(such as HOV lane access and parking privileges), I combined geocoded data from the 2012 

California Household Travel Survey (CHTS) with incentive data (access to HOV lanes, parking 

privileges, and proximity to AFV refueling stations) and a measure of political environmentalism 

based on voting data. Summary statistics for my variables are presented in Table 3-1. 

3.3.1 CHTS Data 

The 2012 CHTS collected detailed socio-economic information, travel information on a 

pre-determined survey day, and vehicle information from 42,431 randomly selected households 

from all 58 counties in California. The 2012 CHTS was administered over a full year starting in 

January 2012. The geocoded raw data include the latitude and longitude of each household 

residential location and travel destinations. Out of 42,431 households randomly selected for the 

survey, only 37,744 households (~86.6%) completed the travel diary, and only 17,807 

households (~ 42%) traveled to work or school on the survey date. After removing households 

without any vehicle, the sample size reduced to 14,477 households (~34%). Discarding records 

with missing information, my final sample has 12,030 households (~28% of recruited 

households.) From this rich dataset, I used information about household, their vehicles, and how 

much they drive.  

Based on my literature review  (Fang, 2008; Salon, 2009; Dillon, Saphores, & Boarnet, 

2015; Brownstone, 2008; Brownstone & Golob, 2009; Kim & Brownstone, 2013), I used a wide 

range of socio-demographic variables characterizing households (income, household structure; 

size, number of children under 16, number of young adults 16 to 24, and number of workers) or 

household heads (age, ethnicity, and educational attainment).  
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Table 3-1 Summary statistics (N = 12,030 households) 

Variable Min  P25 Mean P75 Max SD 

Endogenous Variables   

Count of Household AFVs 0 0 0.072 0 2 0.269 

Work and School VMT 0 4.255 14.625 21.164 179.352 13.935 

Residential density (10K person /sq. mile) .00004a 0.203 0.697 0.909 11.363 0.727 

Incentives & Environmentalism       

Political Environmentalism 0 0.403 0.511 0.612 1 0.151 

Distance to HOV lane (miles) 0 1.206 33.231 38.616 327.542 54.816 

Distance to AFV parking (miles) 0 0.097 5.045 1.466 172.24 17.317 

Household Characteristics       

Midpoint of annual HH Income (in $1,000) 0 62.5 98.915 125 250 62.079 

HH annual income is more than $250,0000 1 0 0.044 0 1 0.206 

Household size 0 2 2.977 4 8 1.4 

Number of children under 16 0 0 0.598 1 7 0.979 

Number of persons between 16 and 24 1 0 0.343 1 5 0.659 

Number of workers 0 1 1.725 2 6 0.739 

Education: High School degree 0 0 0.137 0 1 0.344 

Education: some college 0 0 0.296 1 1 0.456 

Education: Bachelor's degree 0 0 0.284 1 1 0.451 

Graduate or professional degree 0 0 0.223 0 1 0.416 

Age: 18 to 31 0 0 0.070 0 1 0.255 

Age: 32 to 47 0 0 0.284 1 1 0.451 

Age: 67 and up 0 0 0.061 0 1 0.24 

Hispanic 0 0 0.192 0 1 0.394 

Black 0 0 0.029 0 1 0.167 

Asian  0 0 0.065 0 1 0.246 

Native American 0 0 0.042 0 1 0.201 

Other ethnicity 0 0 0.003 0 1 0.059 
a Extremely low density neighborhoods are found in the Californian High Deserts 

 

Household income enters my model as two variables: I used the midpoint of each CHTS 

income interval and a binary variable for households with an annual income over $250,000 (the 

top income bracket is open ended), which make up 4.2% of my sample. Household size, the 

number of children under 16, the number of young adults between 16 and 24, and the number of 

workers are count variables. Age enters my model as categorical variables to capture 

generational effects on residential choice, travel behavior, and AFV ownership (the 48-67 age 
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group is the baseline.) I followed a similar strategy for educational attainment with people with 

less than a high school education as the baseline. For ethnicity, White is the baseline category, 

with binary variables for the other ethnic groups (see Table 1 for details.) 

Second, I used detailed vehicle information on make, model-year, and fuel type to 

determine eligibility for Clean Air Vehicle (CAV) decals that allow driving a vehicle with a 

single occupant in HOV lanes (see http://dmv.ca.gov/portal/dmv/detail/vr/decal for details). In 

this study, only vehicles that are eligible for HOV access decals are classified as AFVs. I then 

used this information to construct my dependent variable; which is the AFV ownership status for 

each household. Out of 12,030 sampled households, 6.95% (836 HHs) own at least one AFV. 

Overall, households in my sample own 868 AFVs: 86.87% are HEVs, 3.34% are PHEVs, 7.83% 

are EVs and 1.96% runs on Crude Natural Gas (CNGs). 

 Third, I accounted for vehicle utilization because previous studies have reported that 

vehicle use impacts vehicle choice decisions (Fang, 2008; Salon, 2009; Dillon, Saphores, & 

Boarnet, 2015; Brownstone, 2008; Brownstone & Golob, 2009; Kim & Brownstone, 2013). I 

focused on non-discretionary travel (such as travel to work or school) for two reasons. First, it 

allows us to ignore spatial and temporal variations in gas prices (remember that the 2012 CHTS 

was administered over one year and that gas prices in California can vary substantially at a given 

point in time; e.g., see https://www.gasbuddy.com/GasPrices/California) which would impact the 

number of discretionary miles driven but not non-discretionary miles since they are not 

responsive to short-term variations in gas prices (Dillon, Saphores, & Boarnet, 2015). Second, 

households who drive more for non-discretionary purposes are more likely to consider AFVs 

because these vehicles have lower operating costs. To calculate non-discretionary miles driven 

from the 2012 CHTS one-day travel diaries, I summed the distance of work and school trips on 



 

  50 
 

weekdays for each household, taking care not to double count when more than one household 

member traveled in the same vehicle. Visited places were then geocoded and trip distances were 

computed using the PostGIS 2.0’s ST_Length function. 

3.3.2 Incentives: HOV network and Alternative Fuel Stations 

My model can only help us understand the impact of incentives that were not uniformly 

available to all CHTS respondents, so I did not include federal incentives in my models. The 

incentives I considered are HOV access with no minimum vehicle occupancy and parking 

privileges. 

Households who could drive on freeways with HOV lanes to reach desired locations 

would benefit from an HOV exemption. I proxied this benefit by calculating the proximity of 

each household residence in my sample to the nearest freeway with HOV lanes using 

Geographical Information System (GIS) software. The location of HOV lanes (as of 2010, to 

ensure that the incentive precedes the effect) was obtained from the California Department of 

Transportations’ GIS database (see http://www.dot.ca.gov/hq/tsip/gis/datalibrary/). 

Another incentive is proximity from home or work to a parking facility that gives 

discounts to AFV drivers or that allocates space for recharging electric vehicles or PHEVs and 

CNG refueling stations. The U.S. Department of Energy Alternative Fuels Data Center (AFDC) 

(http://www.afdc.energy.gov/locator/stations/) provides detailed geospatial information on 

alternative refueling stations. I used the location information provided by the CHTS to calculate 

the shortest distance between these facilities and work location of households in my sample. A 

map showing the location of alternative refueling stations is shown in Figure 3-1. Likewise, I 

used 2010 data to test whether AFV ownership (the effect) is caused by the incentive (policy). 
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Figure 3-1 Alternative Vehicle Refueling Stations 

 

3.3.3 Political Environmentalism 

Following Guber (2003) and Kahn (2007), I hypothesized that AFV ownership may also 

depend on households’ willingness to voluntarily reduce the external costs of their mobility, and 

more generally on their environmental views. Unfortunately, household-level information about 

environmental beliefs was not collected by the CHTS so I followed Kahn’s (2007) strategy. I 
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assumed that households tend to self-select into “like minded” communities as argued by 

Tiebout (Kahn & Matsusaka, 1997; Kahn, 2007) and used precinct-level voting data as a proxy 

for household’s environmental views. More specifically, I went through the California Ballot 

Propositions on environmental issues available from the Berkeley Law School’s Statewide 

Database (http://statewidedatabase.org), which stores precinct level voting data, and selected the 

most relevant propositions on the ballot slightly before or after the 2012 CHTS. Like Kahn & 

Matsusaka (1997), I used the share of votes in favor of positions that were endorsed by 

prominent pro-environment organizations, such as the Sierra Club, the Audubon Society, the 

Nature Conservancy, the Natural Resources Defense Council, the Environmental Defense Fund 

and the National Wildlife Federation. 

Table 3-2 California Environmental Ballot Propositions, 2010 – 2014 

Proposition (Year-Number) and Brief Description a Average  
(Standard deviation) 

Normalized 
factor loadings b 

2010 – 21. Vehicle License Fee for Parks. 
Would have increased vehicle license fee by $18 a year 
to increase funding for State Parks. 
Endorsed position: Support 

44.3% 
(13.82) 

0.89 

2010 – 23. Suspension of AB 32 (2010), the “Global 
Warming Act of 2006”.  
Would have suspended implementation of 
comprehensive greenhouse gas reduction programs, 
including renewable energy and cleaner fuel 
requirements. 
Endorsed position: Opposition 

62.4% 
(13.55) 

0.92 

2014 – 01. Water Bond (AB 1471) 
Authorizes obligation bonds for state water projects, 
including ecosystem protection and restoration. 
Endorsed position: Support 

65.06% 
(11.1) 

0.57 

Notes: a. Endorsed position describes the position of prominent pro-environment organizations, such as the Sierra 
Club, the Audubon Society, the Nature Conservancy, the Natural Resources Defense Council, the Environmental 
Defense Fund and the National Wildlife Federation. 
b. Normalized factor loadings are results from the Principal Component Analysis. The factor score for political 
environmentalism is the sum of the percentage of endorsed votes, weighted by the normalized factor loadings. This 
weighted sum is then normalized to be between 0 and 1. A higher value of political environmentalism indicates 
higher willingness to spend on environmental goods and support for greenhouse gas reduction programs. 
Cronbach’s Alpha is 0.84, with a KMO statistics of 0.617 and a highly significant Bartlett’s test (p<0.0001).
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Table 3-2 provides brief a summary of the three propositions I selected and how they 

fared at the ballot box. The second column reports the average and standard deviation (in 

parentheses) of the proportion of endorsed votes. The last column reports normalized factor 

loadings (see next section.) 

3.4 Modeling framework 

To explain the household AFV ownership, I specified a recursive Generalized Structural 

Equation Model (GSEM) with a Logit link function that endogenizes residential self-selection 

and non-discretionary driving (for work and school purposes).  Structural Equation Modeling 

(SEM) has been applied many times to models of vehicle use and ownership to capture the 

endogenous causal effects between vehicle ownership and use (Dillon, Saphores, & Boarnet, 

2015; Brownstone, 2008; Kim & Brownstone, 2013; Brownstone & Golob, 2009). However, 

SEM can only handle continuous dependent variables so I had to resort to GSEM to handle my 

binomial response dependent variable. 

My conceptual model is shown in Figure 3-2. Causal flows between two variables are 

represented by an arrow. A variable is endogenous when an arrow is directed towards it. 

Variables from which arrows only depart are exogenous. All causal paths are directed towards 

the household ownership of AFV which reflects the recursivity of my model.  

I assumed that households first choose their residential neighborhood (characterized by 

its density) based on their exogenous socio-demographic characteristics, prior to traveling and 

selecting their vehicles. Then, the amount of non-discretionary driving for work and school is 

determined by incentives (parking and access to HOV lanes), household socio-economic 

characteristics, and residential density. Higher density neighborhoods are more likely to be found 
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near employment centers and better transit access – land use features that may reduce the need 

for driving (Dillon, Saphores, & Boarnet, 2015). A recursive path model is appropriate here 

because non-discretionary driving is not sensitive to vehicle fuel economy, which is a proxy for 

the variable cost of driving– a quantity that households may want to minimize when considering 

the purchase of an AFV. Lastly, I assumed that political environmentalism, proxied by 

environmental voting outcomes, directly influences household vehicle choices (households who 

live in neighborhoods with higher concerns for the environment are more likely to own AFVs 

than conventional vehicles) along with residential density and non-discretionary driving for work 

and school. 

 
 

Figure 3-2 Conceptual Model Structure 

Since my model does not include any latent variable measurement component, it only has 

a structural component, i.e., a simultaneous equation system. I used principal component analysis 

(PCA) to measure political environmentalism because I only have three indicators of political 

environmentalism, instead of a Confirmatory Factor Analysis (CFA) which would require more 
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than three indicators to guarantee model over-identification (Kline, 2005, p. 172; Bollen, 1989, 

pp. 238-241). 

3.4.1 Principal component analysis for Political Environmentalism  

I hypothesize the existence of Political Environmentalism, a latent construct that captures 

political attitudes and beliefs about the environment. I used Principal component analysis (PCA) 

to estimate this latent construct that explains the variation in precinct-level voting outcomes for 

the three environmental propositions shown in Table 3-2. This led to a single factor (see below). 

To simplify its interpretation, I normalized this factor to be between 0 and 1, where 1 

corresponds to high pro-environmental beliefs. Normalization is done by subtracting the factor 

score to the minimum and dividing by the range of factor score (maximum less the minimum).  

I assessed the adequacy of my factor using a standard approach. First, I used Bartlett’s 

test of sphericity to check for the appropriate level of inter-correlation between the voting 

outcomes analyzed. Inter-correlations must be sufficiently high to limit the number of factors, 

but not too high to avoid multicollinearity, which I detected using the Kaiser-Meyer-Olkin 

(KMO) statistic – a measure of sampling adequacy. I also used Cronbach’s alpha to measure the 

reliability of my factor. 

For a PCA model to work well, Bartlett’s test should reject the null hypothesis that the 

correlation matrix is an identity matrix. The KMO statistic (which ranges between 0 and 1, with 

small values suggesting that the variables do not have enough in common) should be larger than 

0.6 to be satisfactory. Finally, Cronbach’s alpha (which has a maximum value of 1) has been 

suggested to be at least 0.7 (Kline, 2005, p. 59). 
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3.4.2 GSEM with a Logit link 

Before specifying a structural model, I estimated ‘reduced form’ logit model to assess 

goodness of fit. I also used variance inflation factors to detect multicollinearity among my 

explanatory variables (none was found). 

Overall, I have a recursive model with causality paths directed at AFV ownership; since I 

also assume that the error terms are uncorrelated, my model is guaranteed to be identified (Kline, 

2005; Bollen, 1989). In estimating unknown model parameters, GSEM minimizes the difference 

between sample covariance and the covariance predicted by the model. 

3.5 Results 

I estimated my model using quasi-maximum likelihood, which is the approach used by 

Stata 14.2 when the covariance structure is obtained using the robust-Huber-White-Sandwich 

estimator. This option relaxes the assumption that errors are identically and normally distributed, 

and requires only the errors to be independently distributed. 

In GSEM, as in SEM, model fit refers to the ability of a model to reproduce the observed 

variance-covariance matrix (Kline, 2005; Bollen, 1989). While several fit statistics have been 

developed for SEM, they are not valid for GSEM because those fit statistics assume that 

endogenous variables are jointly normally distributed, which is clearly not the case for a count 

variable. I therefore report only the common fit statistics for my principal component analysis. 

3.5.1 Principal component analysis for Political Environmentalism  

Results of the principal component analysis are presented in the last column of Table 

3-2. I obtained a single factor for political environmentalism using the sum of the percentage of 

endorsed votes (item score) at the precinct level, weighted by the corresponding factor loading 
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shown in the last column. This weighted sum was normalized to be between 0 and 1 to simplify 

interpretation. A higher value of political environmentalism indicates both a higher willingness 

to spend on environmental goods and support for greenhouse gas reduction programs. 

My factor passed standard fitness tests. Bartlett’s test of sphericity yielded a Chi-square 

statistic of 3,007 (df = 3) which is overwhelming evidence against the null-hypothesis 

(p<0.0001) that the voting outcomes analyzed are not correlated. My KMO measure of sampling 

adequacy gave a value of 0.619, which suggests that the voting outcomes considered have 

enough in common to warrant a PCA. Finally, Cronbach’s alpha is 0.84, which suggests that my 

political environmentalism factor has good internal consistency (Kline, 2005, p. 59). 

3.5.2 GSEM Results 

GSEM decomposes the mediating effect of residential selection on AFV ownership by 

estimating direct, indirect and total effects of endogenous and exogenous variables. Direct effects 

refer to how household characteristics directly influence the level of AFV ownership, and 

indirect effects capture how they influence AFV ownership through other variables. Total effects 

are the sum of direct and indirect effects. Table 3-3 presents my results, which include structural 

model coefficients (direct effects) as well as indirect and total effects.  

3.5.2.1 Direct effects 

Let us first discuss coefficient estimates which reflect the direct effects of other 

endogenous and exogenous variables on AFV ownership (Column I of Table 3-3).  

One of my main results is that households who drives a lot for non-discretionary 

purposes, such as commuting to work and school, are more likely to own AFVs (OR = 

1.009***). In contrast, households who reside in higher density neighborhoods are less likely to 
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own AFVs (OR = -0.85***), which is not surprising since suburban households may favor AFVs 

compared to urban families because of their longer commute and the lower cost per mile driven 

of AFVs. As expected, households in neighborhoods with a higher level of political 

environmentalism are more likely to be AFV owners (OR=4.73***). 

Exogenous household characteristics also play a role in AFV ownership decision. 

Notably, as their income increases households are more likely to own AFVs (OR=1.008***), 

although this does not hold for higher income households (households making more than 

$250,000 annually). These households are less likely to own AFVs (OR=0.72***), perhaps 

because they are less sensitive to costs or tend to decide on vehicles for attributes other than its 

fuel efficiency. Interestingly, household structure does not directly impact AFV ownership. 

However, educational attainment of the head of household is an important predictor of AFV 

ownership.  Compared to households with less than a high school degree, households with a 

bachelor degree (OR=1.67**) and a graduate degree (OR=2.25***) are more likely to be AFV 

owners. Lastly, ethnicity also impacts AFV ownership: Hispanic (OR=0.65***) and Black 

(OR=0.51***) households are less likely to be AFV owners compared to otherwise similar 

White households. Several variables impact households non-discretionary (from home to work 

and school) commuting (Column II of Table 3-3).  

As expected, households who reside in denser areas drive fewer miles for work and 

school (-0.265**). Households with better access to highways with HOV lanes (-0.004**) and 

who work in places with access to AFV parking privileges (-0.017***) tend to drive more non-

discretionary work and school miles, although this effect is relatively small. These results should 

not be surprising as HOV lanes and parking privileges makes driving more attractive compared 

to alternative modes and thus incentivize vehicle utilization in general. 
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Table 3-3 Generalized SEM structural model coefficients 

 Direct Effects Indirect Effects Total Effects 

Column number I II III IV V 

Exogenous  ↓ |  Endogenous → HH AFV 
Work & School 

VMT 
Residential Density HH AFV HH AFV 

Work and School VMT 0.009*** -- -- -- 0.009*** 

Residential Density -0.165*** -0.265** -- -0.002*** -0.167*** 

Political environmentalism 1.554*** --  -- -- 1.554*** 

Distance to HOV lane -- -0.004** -- 0.000 -0.004** 

Distance to AFV parking -- -0.017*** -- 0.000 -0.017*** 

Household (HH) characteristics    
  

Midpoint of annual HH income  0.008*** 0.006*** -0.001*** 0.000*** 0.008*** 

HH annual income is more than $250K -0.325*** -0.182 0.047 -0.009*** -0.334*** 

Household size -0.062 0.171 -0.036*** 0.008 -0.055 

Number of children under 16 0.001 -0.709*** -0.011 -0.005 -0.004 

Number of persons 16 to 24 0.049 -0.353** 0.017 -0.006 0.043 

Number of workers -0.044 1.267*** -0.005 0.012 -0.032 

Education: High School degree -0.247 0.086 -0.186*** 0.032 -0.215 

Education: some college 0.178 0.404 -0.183*** 0.034 0.212 

Education: Bachelor's degree 0.515** 0.034 -0.090*** 0.015** 0.531** 

Graduate or professional degree 0.812*** -0.319 -0.060** 0.007*** 0.820*** 

Age: 18 to 31 -0.396** 0.629** 0.227*** -0.032** -0.429** 

Age: 32 to 47 -0.034 0.391** 0.136*** -0.019 -0.053 

Age: 68 and up -0.147 -0.921*** -0.030 -0.003 -0.151 

Hispanic -0.430*** 0.521** 0.256*** -0.038*** -0.468*** 

Black -0.675*** 0.384 0.479*** -0.077*** -0.751*** 

Asian  0.210* 0.415 0.365*** -0.057* 0.153* 

Native American -0.192 -0.232 0.021 -0.006 -0.197 

Other Ethnicity 0.408 -1.186 0.112 -0.029 0.378 

Notes: *, **, & *** denote p-values 0.1, p0.05, and p0.01 respectively. N = 12,030 HH, Log-likelihood, AIC, & BIC scores are -74,816.6, 149,765.1, and 150,268.9 respectively. 
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Among socio-economic variables, I first see that household structure plays an important 

role for non-discretionary travel. Households with more children under 16 (-0.709***) and 

young adults aged 16 to 24 (-0.353**) have less discretionary driving since children under 16 

typically go to schools closer to home, but those with more workers drive more (1.267***) for 

non-discretionary purposes since more workers imply more driving to the workplace. Compared 

to the 48-67 baseline age group, younger households are more likely to drive more (0.629** for 

the 18 to 31 age group and 0.391** for the 32 to 47 age group), while older households (aged 68 

and up) drive less for non-discretionary travel (-0.921**) as they are more likely to be retired. 

It is also interesting to discuss how socio-economic variables significantly influence 

household select their residential location (Column III of Table 3-3). First, I see that households 

with higher incomes tend to choose lower density neighborhood (-0.001***), which is not 

surprising because higher income neighborhoods tend to have large lot houses. Likewise, larger 

households prefer neighborhoods with lower density (-0.036***) because they typically need 

housing with larger lots. Age of the head of household seems especially important as younger 

adults (0.227*** for the 18 to 31 group and 0.136*** for the 32 to 47 group) prefer 

neighborhoods with higher density than the 48 to 67 baseline group. Ethnicity also matters as 

Hispanics (0.256***), Black (0.479***), and Asians (0.365***) tend to live in higher density 

compared to their White socio-economic counterparts.  

3.5.2.2 Indirect and total effects 

The last two columns of Table 3-3 reports indirect and total effects of endogenous and 

socio-demographic exogenous variables on AFV ownership, non-discretionary commuting, and 

residential density selection. Indirect effects (product-sum of relevant direct effects) refer to how 
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these variables affect AFV ownership decisions through residential self-selection and work and 

school commuting.  

I found several variables that exhibits interesting indirect effect on AFV ownership. Both 

the estimated direct effect of residential density on household AFV ownership and estimated 

indirect effect through work and school commuting are positive (-0.165*** & -0.002*** 

respectively), resulting in a stronger negative total effect (-0.167***). Households living in high 

density urban neighborhood does not commute as much as their suburban counterparts, and those 

who live in low density suburban neighborhoods might prefer AFVs because of their lower 

operating cost – and indeed households who commute more for work and school are more likely 

to prefer AFVs. The negative indirect effect points to the existence of a mediating effect of work 

and school commutes on the residential density effects on AFV preferences. This suggests that 

while households who live in lower density neighborhoods are more likely to be AFV owners, 

they do so even more because their longer commute.  

The indirect effect of HOV and parking incentives on AFV ownership through work and 

school commuting is relatively mild compared to its direct effect. This suggests that while HOV 

exemptions (OR=1.004**) and parking privileges (OR=1.017***) for AFV owners may promote 

the adoption of AFV, they do so mostly by encouraging longer commutes (as cost per mile 

drops) – which might not be socially desirable. 

Lastly, mediating effects also exist for households with higher educational attainment. 

Households holding graduate degrees are more likely to prefer AFVs, but at the same time, they 

are also more likely to choose lower residential density and thus would have a longer commute. 

This suggests that living in a high density urban neighborhood suppresses the effect of 
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educational attainment on AFV preferences. However, on average, the indirect effect through 

suburban living preferences and longer commute eclipsed the effect of higher-density urban 

living for households with higher educational attainment (0.820*** for graduate degrees). 

3.6 Conclusions 

This paper presents a Generalized SEM model with a Logit link that jointly explains 

household ownership of AFVs, vehicle use for work and school purposes, and residential density 

while accounting for residential self-selection, political environmentalism, and the impact of 

incentives in the form of HOV access and parking privileges. To build my dataset, I combined 

household level data from the 2012 California Household Travel Survey with geospatial 

information about residential density, voting outcomes on selected California environmental 

ballot propositions, an information about the HOV network and the location of refueling stations 

for alternative vehicles. 

My methodology offers several advantages. First, I used household-level data with a rich 

set of socio-demographic variables to account for household heterogeneity. Second, I used 

proximity to freeways with HOV lanes and AFV parking facility to measure operational (non-

monetary) incentives for AFVs while most previous studies (Gallagher & Muehlegger, 2011; 

Diamond, 2008; 2009) relied on binary variables and used administrative units to measure the 

impacts of this type of incentives. Third, my GSEM framework endogenizes residential selection 

and non-discretionary driving in explaining AFV ownership. 

My results show that political environmentalism matters. Households who live in 

neighborhoods favorable to pro-environment agendas are more likely to own AFVs, which is 
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consistent with previous studies (Gallagher & Muehlegger, 2011; Diamond, 2008; Kahn, 2007). 

Second, while AFV incentives such as HOV exemption and parking privileges may nudge 

households to be AFV owners, they do so by encouraging longer commutes. Households who 

live farther from a freeway with HOV lanes or work farther from parking lots that favor AFVs (-

0.004** and -0.017*** respectively) are less likely to be AFV owners. Thus, expanding access 

to HOV lanes with no occupancy requirement and granting AFV drivers parking privileges will 

increase AFV ownership. However, this will also increase non-discretionary driving, although 

the effect is relatively small. These results suggest that parking privileges provide a greater 

incentive. On average, a household moving 1 mile closer to an HOV lane would induce driving 

by an additional 0.12 miles per month. Working 1 mile closer to a parking lot with AFV 

privileges would induce a household to drive an additional 0.51 miles per month. This is further 

evidence that HOV programs come with unintended consequences (Shewmake & Jarvis, 2014; 

Shewmake, 2012; Kwon & Varaiya, 2008). 

Lastly, a longer commute has a mediating effect on how residential density affects AFV 

ownership (indirect effect = -0.002***). Low density suburban households are more likely to 

own AFVs partly because of higher driving needs. This suggest that, while policies promoting 

high density neighborhood will reduce driving needs (direct effect = -0.265***), its effect on 

reducing likelihood of AFV ownership is considerably smaller (direct effect = -0.165***).  

My research is not without limitations, which are mostly due to data availability. One 

limitation is my use of votes on ballot propositions to proxy for environmental beliefs. A second 

limitation is that the 2012 CHTS, like most travel diary surveys, provides only a cross-sectional 

snapshot of household travel behavior so I can only test a unidirectional relationship between 
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vehicle utilization and AFV ownership via a recursive GSEM model. It would be of interest to 

explore if there is a bi-directional link between vehicle miles driven and AFV ownership. Testing 

this relationship would require estimating a non-recursive model on panel survey data. This is 

left for future work. 
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4 Measuring urban form as a latent construct in travel behavior research: A case study 
of transit use and non-motorized travel in Southern California 

This essay examines the influence of urban form on transit use and non-motorized travel (NMT, 

including biking and walking) for households (with at least one employed adult) in Los Angeles 

and Orange Counties in California based on 2009 National Household Travel Survey (NHTS) 

data (N=2,182 HH).  The objectives of the research are (1) to assess several methods for 

measuring urban form features in the near-residence and near-workplace neighborhoods and (2) 

to assess the importance of these urban form features on transit use and NMT after accounting 

for the influence of these features on household vehicle ownership and residential selection.  

Results provide insights into the relative influence of several specifications of population 

density, transit access and walkability measures on transit use and NMT for commute and non-

work trips. Reduced form models suggest that discretionary travels are dominated by 

household’s socio-demographic status. In terms of residential selection, lower income, younger, 

and smaller households are more likely to choose a dense, pedestrian friendly, and transit rich 

neighborhood. In terms of vehicle ownership, households living in high density, pedestrian 

friendly, and transit rich neighborhoods are less likely to own vehicles. After accounting for the 

influence of urban form on vehicle ownership and residential selection, workplace transit 

accessibility has greater influence on transit commuting than transit access in household’s 

residence. Results vary by how urban form is specified and by source of travel data. Finally, 

there are some evidence that population density affects non-motorized travel for discretionary 

purposes. 
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4.1 Introduction 

Transit and non-motorized travel (NMT, including biking and walking) represent 

sustainable modes of transportation. Compared to automobiles, they require less resources and 

are less injurious to the environment for each miles-traveled (Kuzmyak & Dill, 2012). 

Contemporary planning has been increasingly focused on integrated land use, transit and active 

transportation plan in response to rising fuel prices, environmental awareness, and public health 

concerns. In car-dependent regions, such as Southern California, transportation planning 

organizations have also invested in these modes to meet social justice mandates (Spears, 

Boarnet, & Houston, 2016; Houston, Boarnet, Ferguson, & Spears, 2014; Southern California 

Association of Governments, 2016).  

Pursuant to California’s Sustainable Communities and Climate Protection Act of 2008 (SB 

375), Metropolitan Planning Organizations (MPOs) are required to develop integrated transit 

investment and housing allocation plans to meet greenhouse gas (GHG) emission standards. In 

particular, the Southern California Association of Governments (SCAG) developed plans that are 

explicitly aimed at reducing the use of private cars and increasing the use of transit, walking and 

bicycling by coordinating transit corridor investments with housing supply trajectories (SCAG, 

2016). In November 2016, Los Angeles county voters generously passed Measure M which is 

expected to generate $120 billion in public transit investment from a half percent increase in 

sales tax for the next 40 years.  

These policy-goals largely rely on a large body of evidence about how transit improvements 

and land use changes affects travel behavior. The literature suggests that household travel 

behavior is influenced by a tangle of personal and household characteristics, socioeconomic 
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status, and urban form4F

5. Urban form is typically operationalized using a composite set of spatial 

metrics representing features near residences or travel destinations related to design (street 

connectivity and walkability), diversity (land use mix), and density (land use intensity). This 

behavioral framework begs the question: how well do these metrics capture how urban form 

influences travel behavior? More specifically, how useful are empirical models relying on these 

metrics in informing policy aimed at improving transit and active transportation.5F

6  

To answer these questions, the objectives of the research are (1) to assess several methods 

for measuring urban form features in the near-residence and near-workplace environments and 

(2) to assess the importance of these urban form features on transit use and NMT after 

accounting for the influence of these features on household vehicle ownership and residential 

selection. In particular, this research compares travel behavior models where urban form is 

measured simply by population density, to a more complex approach where urban form is 

conceptualized as an unobserved (latent) construct, or factors, that underlie multiple observed 

land use variables. These variables include measures of walkability and transit access, which 

may better explain walking and transit use respectively, both at the trip’s origin (home) and the 

destination (workplace). 

                                                 
5 In this dissertation, urban form refers to the physical patterns, layouts, features, and structures of urban space. I 
used it as a ‘catch-all’ that is interchangeable with land use and built environment. Semantics aside, I am 
approaching these concepts from a model-selection perspective.  
6 To partly answer these questions, this essay considers household’s transit usage and NMT because they are likely 
to be complements; transit users have to augment their travel by walking or biking to and from their final 
destination. Park and ride is another thing to consider and it is beyond the scope of this paper. 
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4.2 Literature review 

To motivate my modeling strategies and contextualize my results, I first review of the 

literature on urban form and travel behavior. I focus on empirical papers between 1997 to 2016 

that examined transit usage and NMT and various methods to define, specify, operationalize, and 

capture urban form. Finally, I discuss methodological treatments of residential and vehicle 

ownership self-selection in this field.   

4.2.1 Urban form and travel behavior 

Since the 1980s, proponents of the New Urbanism movement have sought to promote 

socially and environmentally desirable travel behavior, namely less driving and more walking 

and transit use, by changing the urban environment. The popularity of these ideas can be 

attributed to the increasing social and environmental costs of driving. Today, many MPOs and 

transportation planners in the United States have turned to land use planning and urban design 

measures to rein in automobile use (e.g., Boarnet & Crane, 2001; Ewing & Cervero, 2010) and 

promote non-motorized travel (NMT) and transit use (e.g., Khan, Kockelman & Xiong, 2014). 

The influence of urban form (including land use, urban design, and other physical features 

of the urban landscape) on travel behavior is the most heavily researched subject in urban 

transportation planning (Boarnet & Crane, 2001; Ewing & Cervero, 2001, 2010). As reported in 

recent reviews (e.g., see Boarnet et al., 2011; Boarnet, 2011; Brownstone, 2008; Ewing & 

Cervero, 2010), previous studies concerned with the relationship between urban form and travel 

behavior estimate models where measures of travel behavior (VMT, transit use, walking, trip 

frequency) are regressed on individual and household socio-demographic variables (i.e., age, 
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ethnicity, education level, household income and size) and measures of urban form around each 

household’s residence.  

Boarnet & Crane (2001) proposed that the near-residence configuration of urban form 

influences travel behavior because it shapes the time cost of travel. This proposal is rooted in a 

microeconomic theory / behavioral framework which assumes travel behavior (trip length, trip 

frequency, mode choice) represents a decision shaped by the cost of travel and budget 

constraints, both in monetary terms and time. For example, street grids, mixed land uses, transit 

access, and pedestrian-oriented neighborhoods change the time cost of travel or the relative cost 

across modes. Aesthetic design elements could make walking trips more pleasing and thus shape 

the ‘psychological’ or subjective cost of travel. This subjective cost can be measured by 

perceived neighborhood walkability (Cao, Handy & Moktharian, 2006; Voorhees et al., 2010). 

On the other hand gasoline price, congestion pricing, tolls, price of parking, and price of transit 

ridership affect the monetary cost of travel.  

In the same vein, de Dios Ortuzar & Willumsen (2011, pp. 493-7) provide an exhaustive 

review on how land use planning decisions—assumed to be exogenous—may affect accessibility 

and spatial-activity patterns. Small & Verhoef (2007, pp. 12-14) thoroughly discussed the need 

to account for endogeneity of land use in travel behavior research and available econometric 

techniques to handle this modeling problem. 

Urban form alone, however, does not explain travel behavior in full. Spears, Houston, and 

Boarnet (2013) studied the role of socio-psychological factors on transit ridership. They used 

Confirmatory Factor Analysis (CFA) to capture respondents’ attitude towards transit riders and 

safety perception, and fitted logistic and Tobit regressions to explain transit patronage on a 
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sample of 279 Los Angeles, CA households. They found that these socio-psychological factors 

matter, even after controlling for demographic and urban form variables. For example, attitude 

towards transit and safety concerns affect transit ridership decisions.     

4.2.2 Early conceptualization of urban form in travel behavior research  

Some researchers have sorted elements of urban form into sometime overlapping categories with 

words beginning with D: density, diversity, design, destination accessibility, and distance to 

transit service, and demand management (Cervero & Kockelman, 1997; Ewing & Cervero, 2001, 

2010; Cervero & Duncan, 2003; Ewing et al., 2009). Empirical results, however, show that this 

categorization of urban form is not axiomatic (Cervero & Kockelman, 1997; Cervero & Duncan, 

2003). Density is measured as the variable of interest per unit of area, gross or net, where the 

variable can be population, residential units, and employment. Diversity of land use mix in an 

area is usually measured with an entropy index (see following section for the formula) where low 

values indicate single-use environments and higher values more varied land uses. An entropy 

index of one, the maximum, suggests that all types of land uses are equally represented within 

the area.  Design typically captures street-network characteristics, including connectivity, 

sidewalk coverage, pedestrian crossings and other metrics that set pedestrian-oriented 

environment apart from automobile-oriented ones.  

 Cervero & Kockelman (1997) relied on factor analysis to extract a small number of 

underlying factors of urban form dimensions that can be used to represent relationships among 

sets of interrelated urban form variables. They used data from the Association of Bay Area 

Governments (ABAG) land-use inventory in 1990 to calculate 27 urban form variables, and 

extract three underlying factors—density, diversity, and design— using factor analysis (p. 210). 
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However, only 12 out of 27 candidate variables were used in the final extraction as factor 

loadings with a magnitude under 0.30 were discarded. The first factor, which captures density, 

accounts for 47.6% of the total variation. The second factor, accounting for 18% of the total 

variation captures the design dimension, and more specifically walking quality (pedestrian-

friendliness or walkability). Their analysis suggests that walking quality is positively associated 

with the provision of sidewalks and street lights in flatter areas with planted strips, and 

negatively associated with block length and lighting spacing. While their factor-analytic results 

cannot attest to the three-dimensionality of urban form, Cervero and Kockelman (1997) found 

that the concept of urban form may be defined along distinct elements, and that these elements 

are associated with travel behavior, although in ways that are complex and difficult to fully 

capture. Multiple regression results from Cervero and Kockelman (1997) showed overall that 

neighborhoods with better walking quality are related to less driving and that density, land use 

diversity, and pedestrian-oriented neighborhoods encourage non-auto travel.  

Urban form and active travel behavior is also a critical issue in public health (Cervero & 

Duncan, 2003; Frank et al., 2005). Obesity, for example, is more prevalent in areas are not 

considered walkable. In the same vein of Cervero & Kockelman (1997), Cervero & Duncan 

(2003) relied on principal component analysis to capture the dimensionality of urban form, both 

at trip origin and destination, before using the factor-extracts as covariate to explain active travel 

behavior. Like Cervero & Kockelman (1997), they found two, instead of three, dimensions of 

urban form: density (intensity of land uses) and design (walkability, pedestrian friendliness, and 

street-connectivity). Their multinomial-logit regression suggests that land-use diversity is the 

strongest predictor of walking (mostly for social and shopping purposes). 
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Frank et al. (2005) measured urban form using residential density, street connectivity 

(intersection density), and land use mix. Physical activity was measured using portable 

accelerometers worn at the hip of the respondent. Normalized measures of urban form (z-scores) 

were combined into a near-residence walkability index. This index is calculated as a weighted 

sum of the normalized value, and the weights were determined in an ad hoc manner to maximize 

explanatory power. Their linear regression models indicate that their walkability index explains a 

substantial fraction of the variance in physical activity after controlling for gender, age, 

education, and ethnicity.  

4.2.3 Strategies in measuring urban form 

More recent studies benefited from GIS to better capture environmental attributes, which 

allowed researchers to observe heterogeneity of urban form in greater detail (Leslie et al., 2007; 

Voorhees et al., 2010; Manaugh & El-Geneidy, 2011; Giles-Corti et al., 2011; Khan, Kockelman 

& Xiong, 2014). Furthermore, if spatial data are available in sufficient granularity, researchers 

no longer need to rely on predetermined neighborhood boundaries, such as census tracts or 

transportation analysis zones, which was a constraint for Cervero & Kockelman (1997) and Cao, 

Handy & Mokhtarian (2006). Leslie et al. (2007) demonstrates how almost any type of spatial 

data can be used to develop and derive measures of urban form to more directly account for near-

residence environments and its influence on travel behavior. The following papers have used GIS 

capabilities to generate measures of urban form in active travel behavior research.  

Voorhees et al. (2010) studied the effect of self-reported neighborhood characteristics 

and perception on walking to school by 8th grade girls who lived within 1.5 miles from their 

school. Using GIS, they created a ½ mile street network buffer around each girl’s home 
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(“synthetic neighborhoods”) where they captured various features of urban form including street 

connectivity (alpha, beta, and gamma indices; see next section for complete definition), block 

size, population density, land use mix, and availability of active destinations (e.g., parks, 

swimming pools, basketball courts, etc.). After geocoding home addresses, they related each 

buffer to its socioeconomic characteristics from the 2000 Census. Their survey also captured 

perceived neighborhood characteristics using a ten-item questionnaire about safety, aesthetics, 

and access to facilities. However, they did not control for residential self-selection. They 

reported that girls who perceived that their neighborhood is safe for walking are twice as likely 

to walk to or from school compared to those who do not. Moreover, girls with more total 

destinations available in their neighborhood were 38% more likely to walk to or from school 

whereas girls living in neighborhoods with larger block sizes were 20% less likely to walk.  

Manaugh & El-Geneidy (2011) analyzed household travel data from the Montreal Origin-

Destination Survey (2003) to explore how well 4 measures of walkability—walkability index as 

suggested by Frank et al. (2005), walk opportunities index, pedestrian shed, and Walk Score® – 

explain walking behavior. Like Frank et al. (2005), their walkability index is the sum of z-scores 

of urban form variables. Additionally, they created a measure of walk opportunity index, which 

reflects accessibility, composed of the number of retail businesses, combined with weights to 

represent network connectivity and the importance of each retail type (see also Kuzmyak et al., 

2005). Pedestrian shed is measure of accessibility that is conceptualized as a ‘walkable 

catchment’ area from a given point (see also Porta & Renne, 2005). It is calculated as the 

proportion of area that is truly accessible by sidewalk availability and connectivity, an attribute 

of the network, to the total area that would have been accessible on a 10 minute walk (a circle). 
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Finally, Walk Score®, a proprietary index of walkability, is used at the zip-code level. Walk 

Score® uses a patented method that assigns points based on distance to amenities, combined 

with a decay function (see walkability.com/methodology). The decision to walk on a home-based 

trip to school and shops, was separately modeled as a binary variable in a logistic model. 

Manaugh & El-Geneidy (2011) found that the Walk Score® index explains more of the variation 

in walking trips to shopping than other indices of walkability. For walking to school, pedestrian 

shed was found to be the best walkability predictor.  

Duncan, Alstadt, Whalen, and Melly (2013) investigated the validity of Walk Scores and 

Transit Scores using Spearman correlations of these scores with GIS generated metrics, 

correcting for spatial autocorrelation. They collected a school-based sample of 1,292 residential 

addresses from public high school students in Boston, MA, and used this geocoded information 

to draw Walk Score and Transit Score. They use buffer analysis to generate GIS metrics from 

multiple spatial databases such as MassGIS, ESRI Business Analyst InfoUSA, Census 

demographic and housing data, etc.  Their results offer evidence that, at larger spatial scales, 

Walk Score is a good, convenient tool to measure certain aspects of walkability and transit 

availability.  Duncan et al. (2013), however, did not use travel or physical activity data to inspect 

the validity of Walk Score and Transit Score as a measure of walkability and transit availability 

respectively. If Walk Score is indeed a measure of walkability and transit availability, then 

neighborhoods that report higher scores should predict higher levels of walking and transit use 

(i.e. in an experiment, as thermometer reading, a measure for temperature, increases, water 

should eventually come to a boil).  
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Houston (2014) investigates the influence of Modifiable Areal Unit Problem (MAUP) to 

analyze the effect of urban form on moderate and vigorous physical activities. He uses a high 

quality GPS accelerometer data from 143 participating households which generated 5,066 

locations – a fine-grained data for physical activities. Urban form metrics, which included 

exposure to green spaces, came from multiple sources. Green spaces data was comprised of tree 

canopy, irrigated and non-irrigated grass cover come from high-resolution land cover map. 

Intersection density as a measure of street connectivity wass used a proxy for walkability. Land 

use and employment data come from 2011 InfoUSA and SCAG employment database in GIS 

format. To evaluate scale effects, Houston (2014) fitted separate logistic regression for each size 

of the three buffer- and grid-based scales. He found that green space cover was significantly 

associated with physical activity at the 100 meter grid, but not at larger grid sizes. Green space 

cover was significantly positively associated with physical activity at all buffer sizes (50 m, 

250m, and 500m), but with a decreasing magnitude of influence as buffer size increase, 

suggesting the need for distance-weighting in specifying urban form in the context of travel 

behavior or physical activity.  

Giles-Corti et al. (2011) examine the impact of neighborhood walkability within 2 

kilometers of public schools on children’s walking to school behavior.  They used GIS to 

develop two measures of walkability: pedestrian shed and traffic exposure, and created an index 

using the sum of decile-scores (1= least walkable, 10=most walkable) of each measure. They 

found that the likelihood of walking to school was increased by greater walkability but is 

reduced by traffic exposure. Connected street networks provide direct routes to school, and thus 

make for a walkable neighborhood centered on a school. But when designed for heavy traffic 
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(i.e., lack of traffic calming measures), pedestrian safety might compromise the potential for 

children to walk to school. 

Khan, Kockelman & Xiong (2014) fit several generalized linear model specifications on 

detailed travel data from the Puget Sound Regional Council (PSRC) 2006 household travel 

survey to evaluate the effects of urban form on active travel modes. Their survey data includes 

10,510 individuals across 4,741 households residing in Seattle metropolitan area. In this travel 

survey, each trip was connected to an origin and destination parcel, thanks to very fine parcel-

level information inventoried by PSRC. Their models did not control for self-selection and thus 

the marginal-effect may be overestimated (p. 125). The results, however, stress the importance of 

street connectivity, transit (bus-stop) availability, and land use diversity in policies aimed to 

promote active transportation.   

4.2.4 Residential and vehicle ownership self-selection  

While seminal in operationalizing urban form in the urban planning and public health 

literatures, Cervero and Kockelman (1997) and Frank et al. (2005) did not address the problem 

of residential and vehicle self-selection which may bias estimates of the effect of urban form on 

travel behavior (Cao, Handy & Mokhtarian, 2006; Brownstone, 2008). Urban form may not be a 

causal factor on travel behavior. To a certain extent, it could mask the effect of socio-economic 

factor (i.e. income, employment status, household composition) that do influence travel.  

Cao, Handy & Mokhtarian (2006) was the first to examine residential self-selection on 

the effect of urban form on pedestrian behavior. To control for residential self-selection they 

explicitly asked their survey respondents whether proximity to stores was an important factor in 

choosing their current residence. Cao, Handy & Mokhtarian (2006) surveyed 1,368 households 
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in 6 middle-income Austin, Texas neighborhoods. They collected data on household walking 

behavior and their perception of the neighborhood’s walkability, combining it with measures of 

street-connectivity measures at the neighborhood level. They fitted a Negative Binomial 

regression model to explain walking frequency, using perceived (self-reported) and actual 

neighborhood urban form characteristics as observed independent variables (they did not attempt 

to extract any latent factors). Their results suggest that, after controlling for self-selection, 

neighborhood characteristics impacted strolling (leisure walking) frequency. They also reported 

that perceived characteristics had more explanatory power than actual (objective) measures of 

street connectivity.   

Establishing causal links in travel behavior research, especially those focusing on active 

travel, has been difficult mostly because of the cross-sectional nature of travel survey data. Wasfi 

et al. (2016) overcame this problem by using the Canadian National Population Health Survey 

(NPHS), a longitudinal database, to study the effect of neighborhood walkability and walking 

behavior. Respondents who changed residential locations during the study period were exposed 

to various levels of changes in urban form, and thus provided a quasi-experiment of changes in 

walking behavior associated with changes in walkability, measured by Walk Score®. While the 

decision to change residential location may very well be a self-selection process, the household 

does not have the choice over the level of change in neighborhood walkability. After taking care 

of attrition,  their fixed-effect model suggest that exposure to more walkable neighborhoods and 

moving from less walkable to more walkable neighborhoods was associated with increases in 

utilitarian walking, even for individuals who were otherwise inactive during their leisure time.  
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Previous studies have noted the importance of addressing vehicle ownership endogeneity 

in travel behavior research (e.g. Dill, 2004; Kuzmyak & Dill, 2012; Bento et al., 2005; 

Mannering, 1986; Zegras, 2010; Houston, Boarnet, Ferguson, & Spears, 2015; Dillon, Saphores, 

Boarnet, 2015). Dill (2004) and Kuzmyak & Dill (2012) report that vehicle ownership and 

availability is perhaps the most telling explanatory factor of transit and NMT use. On average, in 

households with fewer vehicles than licensed drivers (vehicle ratio less than 1) walk 12.3 percent 

and bike 1.6 percent of their daily trips, while households with more vehicles than licensed 

drivers (vehicle ratio more than 1) only walk 7 percent and bike 0.8 percent for their daily trips.  

Houston, Boarnet, Ferguson, and Spears (2015) used a two-stage-regression approach to 

control for vehicle ownership endogeneity in estimating the impact of transit infrastructure on 

walking and transit usage. They found that households in high density neighborhoods and higher 

transit service were associated with lower vehicle ownership and utilization. Households within 

0.5-2.0 miles of a rail transit station tended to walk and use transit more and that this relationship 

was stronger for households within 0.5 miles. Spears, Boarnet, and Houston (2015) used an 

experimental design to estimate the effects of light rail transit investment in Los Angeles and 

confirmed that proximity to rail transit stations reduced household driving and increased rail 

transit use.  
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Table 4-1 Selected Review of Transit & NMT Papers 

Author(s) (Year) Question of interest Data Methods Key findings 

Cervero & 
Kockelman (1997) 

Influence of the built 
environment (density, 
diversity and design) on 
travel demand 

Bay Area Travel Survey 
(BATS) 1990, N=896 HHs 
ABAG land-use inventory 
(1990), field surveys of 
N=50 neighborhoods 

Factor Analysis  
Multiple regression 

Density, land-use diversity, and 
pedestrian-oriented design reduced trip-
rates, and encouraged non-auto travel 

Cervero & Duncan 
(2003) 

Influence of the built 
environment (density, 
diversity, and design) on 
active travel 

Bay Area Travel Survey 
(BATS) 2000 

Factor Analysis  
Multinomial logit model for 
mode choice 

Land-use diversity was the strongest 
predictor of walking (mostly for social 
and shopping purposes)  

Frank et al. (2005) Influence of urban form on 
physical activity 

Metropolitan Atlanta’s 
Regional Transportation and 
Air Quality (N=523) 

Linear regression Measures of land-use mix, residential 
density, and intersection density were 
positively related with number of 
minutes of moderate physical activity 
per day 

Cao, Handy & 
Mokhtarian (2006) 

Influence of the built 
environment and residential 
self-selection on pedestrian 
behavior 

Primary travel survey (1995). 
N= 1,368 adults in 6 
neighborhoods of Austin, TX 

negative binomial regression After accounting for self-selection, 
neighborhood characteristics impact 
strolling frequency 

Leslie et al. (2007) Measuring built 
environment features that 
influence physical activity 
(walking and biking) 

Physical Activity in 
Localities and Community 
Environments (PLACE), 
Australia  
N=32 communities 

Described GIS spatial data 
methodology to measure 
built environment attributes 

Demonstrates GIS capability to capture 
built environment influences on physical 
activity 
Computes decile scores and indices of 
built environment attributes 
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Author(s) (Year) Question of interest Data Methods Key findings 

Voorhees et al. 
(2010) 

Influence of actual and 
perceived neighborhood 
features on walking to or 
from school 

Trial of activity in 
Adolescent Girls 
Survey of 8th grade girls. N= 
890 girls, 36 schools 

Nested multivariate (mixed 
effects) logistic regression 

Safety, distance to school, and street 
design influences walking to and from 
school 

Manaugh & El-
Geneidy (2011) 

Correlation of walkability 
and travel behavior 

Montréal origin–destination 
survey (2003) N=17,394 
households 

Logistic regression Walkability does not have the same 
correlation with travel behavior for all 
individuals or households 

Giles-Corti et al. 
(2011) 

Impact of walkability on 
walking to school 

Survey of school children in 
Perth, Australia (2007) 
N=1,314 children, 238 
schools 

Logistic regression  Connected street network and low traffic 
volume increases the likelihood of 
walking to school  

Spears, Houston & 
Boarnet (2013) 

The role of socio-
psychological factors on 
transit ridership 

N=279 HH in south Los 
Angeles, CA 

Confirmatory Factor 
Analysis, logistic regression, 
Tobit model 

Attitudes towards transit and safety 
perception affect transit ridership 

Duncan et al. (2013) Validity of Walk Scores and 
Transit Scores  

School-based sample of 
students in Boston, MA 
(N=1,292) 

Spearman correlations of 
Walk Scores and Transit 
Scores with GIS-generated 
metrics 

At larger spatial scales, Walk Score is 
good, convenient tool to measure certain 
aspect of walkability and transit 
availability  

Khan, Kockelman & 
Xiong (2014) 

The effects of built 
environment variables on 
the use of non-motorized 
travel modes 

Puget Sound Regional 
Council (PSRC) 2006 
household travel survey  
N = 4,741 HHs 

Generalized linear models 
(not control for self-
selection): 1) Household 
vehicle ownership (Poisson); 
2) Non-motorized trip 
generation (Zero-Inflated 
Negative Binomial); 3) 
Intrazonal versus interzonal 
trip type binary logit; 4) 
Interzonal: Destination   
choice   models,   by   trip   
purpose (MNL); 5) Intrazonal 

Higher rates of non-motorized trips and 
lower vehicle ownership levels are 
associated with street connectivity, 
transit availability and land use diversity 
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Author(s) (Year) Question of interest Data Methods Key findings 

& interzonal mode choice by 
trip purpose (MNL); 6) VMT 
and non-motorized MT 
(Tobit) 

Houston (2014) The influence of Modifiable 
Areal Unit Problem in the 
urban form – physical 
activity  

GPS and accelerometer data 
from 143 participating 
households (N=5066 pings) 

Difference-in-means test 
between urban form 
measures captured using 
circular buffers and grid 
areas 

Scale and zone configurations affect the 
influence of green space and land use on 
walking 

Wasfi et al. (2016) Relationship between 
utilitarian walking levels 
and neighborhood 
walkability through 
longitudinal analyses of a 
population cohort 

Canada’s National 
Population Health Survey 
(N=2976; biannual 
assessments 1994–2006) 

Mixed effects ordered 
logistic regression  
Fixed effects logistic 
regression 

Exposure to more walkable 
neighborhoods and moving from less 
walkable to more walkable 
neighborhoods are associated with 
increases in utilitarian walking, even for 
otherwise inactive individuals 

Houston et al. 
(2015) 

The role of rail transit on 
driving reduction 

Los Angeles sub sample of  
CHTS 2012 (N=8219) and 
supplemental National Travel 
and Activity Survey sample 
(N=383) 

Two-stage regression with 
instrumented vehicle 
ownership; negative-
binomial, multinomial logit, 
and Tobit models  

Features of the rail service and urban 
form ‘maturity’ affect travel outcomes 

Spears, Boarnet & 
Houston (2016) 

The impact of light rail 
transit investment  

Seven-day travel log, before 
and after, N = 285 HH; 
control = 114 HH, 
experimental = 171 HH 

Difference-in-difference, t-
test, between-group before-
after test, using (quasi) 
experimental data 

Proximity to new light rail stations 
reduces driving  
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4.3 Data description 

4.3.1 NHTS travel diary and typical commute data 

The travel data used in this paper come from the National Household Travel Survey (NHTS) 

2009, which obtained data from 4,659 households in the Los Angeles and Orange Counties of 

California. The geocoded raw data include the latitude and longitude of each household location 

and travel destination. Since I focus on active commuting (travel to work), I selected households 

with have at least one worker, which represents approximately 66% of households in the NHTS 

sample and corresponds to 3,078 households. However, only 70% of these households provided 

accurate information about their workplace location, resulting in a final sample size of 2,182 

households.  

The 2009 NHTS was conducted from March, 2008 to April, 2009, includes a one-day 

travel diary of all household trips and detailed household socio-economic and demographic 

information. Participating household members were also asked about their employment status 

and their typical transportation mode to work. There are two sources of information for 

household’s commuting behavior: travel mode reported in the travel diary and the reported 

typical commute mode. The travel diary data also contain information for purpose for each trip 

which was used to identify work commute trips and non-work trips.  This paper examines factors 

associated with typical commute mode, actual commute mode (based on the travel diary), and 

non-work discretionary trips (based on the travel diary).  Active of non-motorized travel (NMT) 

is defined as walking or biking.    
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4.3.2 Socio-economic and demographic characteristics 

Following my literature review, I include a rich set of household socio-economic and 

demographic variables (income, number of workers, number of licensed drivers, number of 

vehicles, and household composition) and the characteristic of head of the household (age, 

ethnicity, and highest educational attainment).  

 For household income, the midpoint of each NHTS 2009 income bracket is used. Since 

income bracket is top-coded at $100,000, I created a binary variable for households in that 

bracket. Household compositional variables, which were found to be predictive of travel 

behavior, consist of the number of children (under 16 years old), number of young adults (aged 

16 to 24), and household size. For race, age, and educational attainment, being White, aged 45 to 

64 (Baby Boomers), and earned less than a high school diploma are baselines.   

Table 4-2 compares the racial and ethnic composition between the sample and the study 

area’s population based on American Community Survey (ACS) 2008-2012. Table 4-2 suggests 

that in Los Angeles and Orange Counties, NHTS 2009 severely oversampled Whites and under-

sampled Hispanics. It also moderately oversampled Asian and undersampled Blacks. 

Table 4-2 Racial and ethnic composition 

 
NHTS 2009 Sample 

(N=2,182 HH) 
ACS 2008-2012 
(12.7 million) 

White 68.4% 32.4% 
Hispanic 20.8% 43.8% 
Black 5.1% 6.8% 
Asian 9.7% 14.7% 
Other ethnicity 2.9% 2.2% 
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4.3.3 Land use variables: density, diversity, and transit access 

To measure urban form, I used fine-grained geospatial information; my variables include 

population density, land use diversity, employment density, and distance to employment centers 

(as a proxy to job-housing balance), transit availability, and street-network connectivity. Using 

Geographical Information System (GIS) software, I assigned land use characteristics to each 

household based on both residential and workplace locations.  I relied on 2010 census data to 

measure population density at the block group level. As a proxy for employment accessibility, I 

extracted from Census Transportation Planning Products (CTPP) data the number of jobs in 

buffer areas with a 10 miles radius centered on each household residence. 

Land use mix was measured from SCAG’s 2005 parcel level land use database. This 

information is available in GIS, which allowed calculating an index of land use diversity at the 

block group level using the entropy formula (e.g., see Dillon, Saphores & Boarnet, 2015) as 

follows: 

 
(1) 

 

where Hi is the land use entropy of block group i, and pij is the area’s proportion of land use of 

type j in block group i. SCAG’s land use database stores parcel level land use based on 150 

categories, which we condensed into C=15 major types of land uses.6F

7  

                                                 
7 These land uses category are: single family residential, multi-family residential, other residential types (e.g. mobile 
home and trailer parks) commercial and services, industrial, transportation, communication and utilities, public 
facilities such as government offices, schools and libraries, military land uses, mixed development, open space and 
recreational, vacant urban land, agricultural, vacant non-urban land (e.g. abandoned mines), body of water and 
facilities, and other land uses. 
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Transit service data were obtained from SCAG’s transit network and from the 2008 Los 

Angeles Metropolitan Transit Authority (LA Metro) GIS database. The shapefile contains data 

about each transit stop, including information on service frequency and connectivity. To measure 

level of service, I aggregated the level of service for each transit stop. By using proximity 

analysis with ArcGIS, I calculated transit availability by aggregating the number of transit lines 

within ¼ mile from each household residence and work location. Aggregate level of service was 

measured by transit stops located within these buffers to capture the extent to which a household 

has the opportunity to use transit to commute.  

4.3.4 Street connectivity 

Advocates of New Urbanist and neo-traditional planning concepts include street connectivity as 

a key component for good neighborhood design. Street networks that are more grid-like are 

preferred over networks that include many cul-de-sacs and long blocks, thus increasing walking 

distances between destinations. The increased distances are thought to discourage walking and 

bicycling and, thus, active commuting. There is also debate over how to measure connectivity 

and what levels of connectivity are appropriate. The current debate is particularly unclear, and 

hard to test empirically, because street connectivity is proposed to meet multiple, sometime 

conflicting objectives. In addition, most efforts to date have focused on the street network, which 

may differ from the pedestrian and bicycle network (Dill, 2004; Kuzmyak & Dill, 2012).  

In this study, I used GIS to calculate measures of street network and bikeways 

connectivity, both for residential and workplace locations. Street network data come Caltrans 

GIS Database (Caltrans, 2010; source: http://www.dot.ca.gov/hq/tsip/gis/datalibrary/). Bikeways 

data for each county come from the Los Angeles County Metropolitan Transportation Authority 
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(LA Metro, 2010; source: http://developer.metro.net/introduction/bikeways-data/download-

bikeways-data/) and the Orange County Transportation Authority (OCTA, 2012; 

http://www.octa.net/Plans-and-Programs/GIS-Data/GIS-Data-Download/).  

Intersection density is measured as the number of intersections per square mile, aggregated at the 

block group level. A higher number indicates more intersections and, presumably, higher 

connectivity. Street density is measured as the number of linear miles of streets per square mile 

of land, which was measured for both street and bikeways. A higher number indicates more 

streets and, presumably, higher connectivity. Street density and intersection density are likely to 

be strongly and positively correlated.  

Transportation geographers have developed other measures of network connectivity 

based on graph theory which relies on links and nodes (Dill, 2004, pp. 5-7). Link-Node Ratio 

(Beta index) is a simple measure of connectivity and equals the number of links divided by the 

number of nodes within in a study area within a block group. Links are defined as roadway or 

pathway segments between two nodes. The Alpha index uses the concept of a circuit – a finite, 

closed path starting and ending at a single node. It evaluates connectivity using the ratio of the 

actual and the maximum possible number of independent circuits. Thus, this index is 

independent to the number of nodes.  Trees roadway configurations and simple networks will 

have a value of 0. A value of 1 indicates a completely connected network. This index is also 

called “meshedness” coefficient in the literature on planar networks. The maximum number of 

circuits is expressed as (2*#nodes – 5) and the number of actual circuit as (#links - # nodes +1).  

The Gamma index is a ratio of the number of links in the network to the maximum 

possible number of links between nodes. The maximum possible number of links is expressed as 
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3*(# nodes – 2) because the network is abstracted as a planar graph. Values for the gamma index 

range from 0 to 1 and can be expressed as a percentage of connectivity (e.g., a gamma index of 

0.48 means that the network if 48 percent connected). 

4.3.5 Walk Score® and Transit Score® 

Walk Score and Transit Score are, respectively, measures of walkability (or pedestrian 

friendliness) and transit availability that were originally developed by Front Seat in 2007, before 

it was bought by Redfin, a technologized real-estate agency, in 2014. These scores were 

generated by a proprietary web-based algorithm, using publicly available geographical data. For 

any input location, the algorithm computes a weighted-sum based on distance to various 

amenities. Weighting is based on amenity type and a distance decay function up to 1.5 miles 

(~30 minute walk) (source: https://www.walkscore.com/methodology.shtml). These sums are 

normalized to a score between 0 (poor) to 100 (excellent).  

Walk Score is computed using population density data, network connectivity metrics, and 

distance to amenities. Transit Score uses data released from transit agencies to generate scores 

based on distance to nearest stop and level of service (frequency and transit mode; rail or bus). 

While Walk Score is increasingly used in transportation planning, housing, and public health 

research (https://www.walkscore.com/methodology.shtml), the literature on Transit Score is 

sparse. For this study, I used an Application Programming Interface (API) to extract scores for 

each household and work location. Summary statistics for my variables are presented in Table 3. 
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Table 4-3 Summary Statistics (N=2,182) 

Variable Min P25 Mean P75 Max Std. dev. 

Endogenous Variables / Travel Behavior outcomes 
Typical use Transit to work (Binary) 0.000 0.000 0.058 0.000 1.000  0.234
Typical use of NMT Travel to work (Binary) 0.000 0.000 0.038 0.000 1.000  0.192
Transit Commuting / Home-Based Work (Binary) 0.000 0.000 0.029 0.000 1.000  0.169
NMT Commuting / Home-Based Work (Binary) 0.000 0.000 0.025 0.000 1.000  0.155
Transit Discretionary trips (Binary) 0.000 0.000 0.045 0.000 1.000  0.208
NMT Discretionary trips (Binary) 0.000 0.000 0.407 1.000 1.000 0.491
Vehicles per licensed driver 0.000 1.000 1.119 1.000 7.000 0.492
 
Household Characteristics 
Midpoint of annual HH income (in $1,000) 2.500 47.500 71.263 100.000 100.000 31.200
=1 if HH income [100K, ~ ) 0.000 0.000 0.397 1.000 1.000 0.489
Household size 1.000 2.000 2.885 4.000 10.000 1.360
Number of kids <16 in HH 0.000 0.000 0.383 1.000 4.000 0.734
Number of worker(s) 1.000 1.000 1.511 2.000 5.000 0.666
 
Head of HH Characteristics 
Age between 16 and 29  0.000 0.000 0.053 0.000 1.000 0.224
Age between 30 and 44 0.000 0.000 0.261 1.000 1.000 0.439
Age between 45 and 64 0.000 0.000 0.540 1.000 1.000 0.498
Age 65 and up 0.000 0.000 0.145 0.000 1.000 0.352
Education: less than High School 0.000 0.000 0.065 0.000 1.000 0.246
Education: High School degree 0.000 0.000 0.140 0.000 1.000 0.347

Education: some college 0.000 0.000 0.288 1.000 1.000 0.453

Education: Bachelor's degree 0.000 0.000 0.275 1.000 1.000 0.447

Graduate or professional degree 0.000 0.000 0.233 0.000 1.000 0.423
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Variable Min P25 Mean P75 Max Std. dev. 

White 0.000 0.000 0.684 0.000 1.000 0.465
Hispanic 0.000 0.000 0.208 0.000 1.000 0.406
Black 0.000 0.000 0.051 0.000 1.000 0.220
Asian 0.000 0.000 0.097 0.000 1.000 0.296
Other ethnicity 0.000 0.000 0.029 0.000 1.000 0.167
 

Residential Urban Forma  
Population density (10,000 person/square mile)c 0.012 0.530 1.742 1.773 59.448 3.157
Housing units per square mile (thousands) 0.050 1.500 4.274 7.000 30.000 4.140
Workers per square mile (census tract; thousands) 0.025 0.750 2.333 3.000 5.000 1.686
Percentage of renter occupied housing 0.000 0.050 0.344 0.600 0.950 0.291
Inverse distance to nearest sub-center (in 1/miles) 0.051 0.158 0.294 0.332 6.262 0.306
Transit service within 0.25 miles (/100) 0.000 0.000 0.044 0.060 5.130 0.135
Land use entropy (diversity index) 0.000 0.224 0.332 0.446 0.727 0.155
Bikeway density  0.009 2.632 6.371 9.466 22.064 4.586
Alpha index 0.000 0.123 0.219 0.291 1.000 0.130
Gamma index 0.340 0.418 0.482 0.531 1.000 0.087
Link/Node Ratio (Beta index) 0.800 1.233 1.410 1.553 2.333 0.237
Intersection density 0.002 0.042 0.063 0.081 0.287 0.031
Street Density  0.006 0.095 0.132 0.166 0.395 0.054
 
Workplace Urban Forma  
Intersection density 0.000 0.003 0.006 0.008 0.025 0.003
Street density 0.006 0.084 0.126 0.160 0.432 0.058
Alpha index 0.000 0.150 0.257 0.333 1.000 0.141
Gamma index 0.340 0.437 0.508 0.559 1.000 0.094
Link/Node Ratio (Beta index) 0.667 1.285 1.482 1.642 2.734 0.259
Bikeway density 0.003 2.436 6.558 9.695 22.892 4.814
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Variable Min P25 Mean P75 Max Std. dev. 

Transit service within 0.25 miles (/100) 0.000 0.000 0.206 0.130 6.100 0.656
 
Walk Score® and Transit Score® 
Residential Walk Score 0.000 36.000 52.895 71.000 99.000 23.652
Residential Transit Score 0.000 26.000 35.158 44.000 100.000 17.281
Workplace Walk Score 0.000 47.000 62.538 81.000 99.000 22.457
Workplace Transit Score 0.000 32.000 43.470 53.000 100.000 19.808
Note: P25 and P75 denote the lower and upper quartiles respectively. HH = household. 
a Measured at the block group level unless stated otherwise. 
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4.4 Methodology 

The objectives of the research are (1) to assess several methods for measuring urban form 

features in the near-residence and near-workplace environments and (2) to assess the importance 

of these urban form features on transit use and NMT after accounting for the influence of these 

features on household vehicle ownership and residential selection.  To do so, this essay compares 

five modeling approaches that share a common recursive conceptual path model that accounts 

for vehicle and residential endogeneities, but varies by how residential urban form was measured 

and specified. A path model posits a hypothesized structural relationship between endogenous 

and exogenous variables that can be written as a system of equations.  

This section will proceed as follows. I start with reduced form logit models to explore the 

influence of urban form and household’s socio-demographic characteristics on the probability of 

transit usage and NMT, without controlling for endogenous self-selection effects. Then, I explain 

my conceptual path model to address these effects by explicitly parameterize relationships 

between endogenous variables. Next, I expound upon urban form modelling approaches and 

elucidate theoretical implication of each approach. Lastly, I specify a recursive Generalized 

Structural Equation Model (GSEM) explaining transit and active commuting, based on the 

aforementioned conceptual model. 

4.4.1 Reduced form model 

A reduced form model was estimated as a starting point in assessing the influence of 

urban form features on transit usage and NMT, and how these relationships vary across different 

urban form specifications.  In the reduced form regression, the travel behavior outcome is the 

only endogenous variable and all other variables are assumed to be exogenous – assuming away 
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endogenous self-selection effects (which will be accounted for using GSEM in subsequent 

analysis). 

Reduced form regression in this study is a logistic regression in which transit usage and 

NMT is specified as a function of urban form and household’s socio-demographic 

characteristics. The purpose of this analysis is to assess the relationships between transit and 

NMT and the aforementioned independent variables, forgoing self-selection effects that may 

exist. For each travel behavior outcomes (transit use and NMT for “typical” commute, transit use 

and NMT for commuting based on travel survey, and transit use and NMT for discretionary, 

non-work trips based on travel survey), I fit six models to explore various specifications of urban 

form. The first uses residential population density as the only urban form metric. The second 

adds walkability and transit availability, represented by intersection density and by number of 

transit stops within a 0.25 mile buffer respectively. The third adds urban form variables; 

walkability and transit availability at the workplace. The fourth adds remaining GIS-generated 

urban form metrics such as land-use diversity (entropy index), employment density, housing unit 

and rental unit density, and distance to the nearest employment sub-center (taken together, these 

variables represent job-housing balance). The fifth model uses Transit Score and Walk Score to 

represent transit availability and walkability. The sixth uses extracts from Exploratory Factor 

Analysis, which will be explained below, to represent urban form. Table 3 presents a summary 

on how these reduced form models are specified. 
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Table 4-4  Specifications of reduced form models 

 

4.4.2 Conceptual path model 

Following Dillon, Saphores & Boarnet (2015), the conceptual path model (Figure 4-1) 

accounts for residential self-selection and vehicle choice endogeneity by specifying a system of 

recursive simultaneous equations where all causal effects are directed at the travel behavior 

outcome of interest: transit use and NMT. To circumvent biases stemming from endogeneities, 

structural equation modeling (SEM) techniques has the advantage of explicitly parametrizing 

endogenous relationships (Golob, 2009). Residential urban form and vehicle-to-licensed driver 

ratio (measures vehicle availability at the household level) are specified as endogenous variables; 

they are assumed to be influenced by household socio-economic characteristics.  

In addition, vehicle choice is also assumed to be influenced by transit availability and 

street connectivity at the workplace. It is assumed that, everything else equal, if the workplace 

can be conveniently accessed without driving, households might forego car ownership. 

Consequently, this conceptual model implies that households make residential and vehicle 
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ownership choices before making commuting-mode decisions, based on their socio-economic 

characteristics and transit access and walkability at the workplace.    

While SEM can circumvent endogeneity problems, linear specification of SEM is not 

suitable to explain the binary dependent variable Yi (which equals 1 if household “i” commutes 

using transit and/or NMT, or 0 otherwise). To handle non-continuous dependent variables, 

Generalized Structural Equation Modeling (GSEM) is selected to estimate these models.   

 

Figure 4-1 Conceptual Path Model 

 

4.4.3 Urban form modeling approaches 

Previous studies (Boarnet & Crane, 2001; Cervero & Kockelman, 1997; Ewing & 

Cervero, 2001, 2010; Ewing et al., 2009; Khan, Kockelman & Xiong, 2014) indicated that the 
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configuration of urban form influences travel behavior (trip length, trip frequency, mode choice). 

By no means axiomatic, three aspects of urban form that could influence travel behavior include 

at least three categories: density (i.e. population density, residential unit density), diversity (i.e. 

land use mix), and design (i.e. street-network characteristics, connectivity).  

In this paper, I examine five distinct approaches to modeling the effect of urban form on 

transit usage and NMT, accounting for self-selection effects. The first approach specifies 

residential urban form with standardized population density only.  This approach is similar to 

Kim & Brownstone (2013) and Brownstone & Golob (2009). The second approach specifies 

urban form with all measures of land use, including measures of density (population, 

employment, housing unit, and renter-occupied homes), land use diversity, transit access, and 

street connectivity (walkability). This approach is similar to Frank et al. (2005); Cao, Handy & 

Moktharian (2006); Voorhees et al. (2010); Manaugh & El-Geneidy (2011); Giles-Corti et al. 

(2011); and Khan, Kockelman & Xiong (2014).  

The third used Exploratory Factor Analysis (EFA) to extract latent factors (or urban form 

dimensions) from the aforementioned measures of land use. Measures of land use that do not 

factor with other variables are entered into the model as observed variables. This approach is 

similar to Cervero & Kockelman (1997) and Cervero & Duncan (2003).  The fourth model used 

Walk Score® and Transit Score® data to represent urban form. Walk Score and Transit Score 

use a patented algorithm to calculate pedestrian friendliness and how well a location is served by 

transit respectively.  These measures are normalized to a score between 0 (poor) to 100 

(excellent). Lastly, the fifth model specifies urban form as a single latent factor which includes 

population density, employment density, transit access, land use diversity, and measures of 
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walkability. The latent factor is jointly-estimated using Confirmatory Factor Analysis. To my 

knowledge, this approach has not been used in the context of transit usage and NMT.  

4.4.3.1 Urban form as a latent construct 

The treatment of residential urban form as an underlying latent construct (in the third, 

fourth, and fifth approaches) merits explanation. Commute typically does not generate utility by 

itself, but from the need of the commuter to arrive at work locations where employment takes 

place. Since home based trips originate from residences, the surrounding land use patterns 

capture the configuration of potential activities that could influence travel behavior.  

The extent to which surrounding land use has the potential to influence travel behavior is 

abstract, it has no natural scale and, in principle, is largely unobservable. How residential urban 

form may influence travel is not directly measurable, but it can be characterized by variables 

such as land use entropy, density, transit access, street connectivity (walkability) and distance 

from employment centers. These features fit the criteria for latent factors or constructs (Bollen, 

1989, p. 180).  Incorporating latent factors or constructs in SEM (and, by extension, GSEM) has 

been critiqued but Bollen (1989, p. 78) have addressed them elegantly. Abstract constructs have 

been a part of scientific theories in many disciplines including quantum physics, biology, 

medicine, psychology, sociology, and thermodynamics.  

In essence, Walk Score and Transit Score, used in the fourth approach, operate within the 

latent construct framework. These scores are (normalized) indices that has no natural scale that 

seek to explain the extent to which a point location is walkable and served by transit. In theory, 

Walk Score should be associated with the extent to which a location facilitates walking; a 

location with higher Walk Score should observe higher levels of walking. The same should also 
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apply to Transit Score – higher scores promise higher transit use. However, since these scores 

are computed by an external proprietary algorithm, the researcher/user does not have control 

over the data quality (Duncan et al., 2013).  

4.4.3.2 Overview of factor-analytic methods  

Factor-analytic approaches have been used to investigate the relationship between sets of 

observed variables and the urban form latent construct (Cervero & Kockelman, 1997; Cervero & 

Duncan, 2003). This approach examines the covariation among a set of observed urban form 

variables to identify the existence of underlying latent constructs (or ‘dimensions’ thereof). 

There are two major types of factor analyses in the statistical toolbox of social science: 

Exploratory Factor Analysis (EFA), used in the third approach, and Confirmatory Factor 

Analysis (CFA), in the fifth approach. This section will give a brief discussion of each and 

explain why CFA may be preferred.  

 EFA is most helpful when the researcher does not have any prior information about the 

link between the observed and the latent variables (Byrne, 2001, pp. 5-6). EFA helps researcher 

to explore how and to what extent the observed variables are linked to their underlying latent 

constructs. A recurring central problem in the application of EFA is deciding the number of 

unobserved factors/latent constructs that can be used to explain the co-variability in a set of 

observed variables (Byrne, 2001; Preacher et al., 2013). In practice, the factor model is used to 

represent observed/measured variables as a linear function of model parameters and unobserved 

factors/latent constructs.  

In numerous cases, the number-of-factors problem, which is inherently a model selection 

issue, should be considered (Preacher et al., 2013, p. 29). Model selection in general is the 
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practice of evaluating a set of competing theoretical explanations, given the observed data. 

Models in the social sciences are parametrical representation of competing theories, which can 

be tested against the observed data using statistical analyses. There are many perspectives on 

what constitutes a desirable model, but typically it is one that “balances” parsimony and 

goodness of fit, the ability of a model to capture the data-generating process.  

Preacher et al. (2013) cautions against the use of EFA to find the “true” number of 

factors, which is the equivalent of using statistical techniques to find the “one true model”. Many 

methodologists (see Preacher et al., 2013, pp. 30-32) have argued that in most circumstances 

“there is no true operating model”. The hypothetical true model would likely be overly complex 

to interpret and would not be stable temporally. It would capture the data-generating process 

only at the time data are observed. Thus all models suffer from misspecification and that the best 

a researcher can expect from a model is that it provide a useful approximation of the data-

generating process.  

However, this perspective does not mean that EFA is a pointless vocation. A researcher 

can still find and retain an ‘optimal’ number of factors; one that satisfies a given criterion in 

service of meeting some well-defined scientific goal. In the context of this paper, the goal is to 

identify theoretically-justifiable model with the highest verisimilitude (proximity to the 

‘objective truth’), and one that stresses generalizability, the ability to replicate and to cross-

validate data that is generated from the same underlying process.   

Preacher et al. (2013) and Bollen (1989, p. 230-232) argue that eigenvalue-based criteria 

are too arbitrary to determine the ‘optimal’ number of factors because it lacks the structure of 

formal hypothesis testing. To overcome this problem, Preacher et al. (2013) suggested RMSEA, 
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the root mean square error approximation, which allows formal hypothesis testing, as a factor 

retention criterion. In practice, RMSEA is widely used in Confirmatory Factor Analysis (CFA). 

Some EFA techniques allow researchers to pre-specify the number of factors and 

therefore blurs the definition of ‘exploratory’.7F

8  Another limitation of EFA is the inability to 

explicitly account for correlated measurement errors, which confounds these errors with the 

latent constructs, potentially leading to ambiguous solutions (Bollen, 1989, p. 232). Lastly, 

Preacher et al. (2013) emphasizes that model selection is not intended to find the true model but 

rather is intended to identify a parsimonious model that gives reasonable fit. In the context of 

factor analysis, this strategy involves identifying a theoretically plausible number of factors 

before data are collected – which leads to CFA. 

In contrast to EFA, CFA is appropriate when the researcher has prior knowledge about 

the underlying structure of the latent constructs (Bollen, 1989; Sorbom, 1989; Bryne, 2001; 

Kline, 2005), as is the case in this paper. CFA overcomes the shortcomings of EFA in 

accommodating theoretical and substantive knowledge. Unlike EFA, a researcher can formally 

test a theoretically-informed model. Once a model is specified, it can be estimated, and goodness 

of fit can be assessed using theoretically justifiable criterions. 

Finally, I turn to algebraic means to explicitly illustrate the methodological differences 

between EFA and CFA. Given a set of observed variables (x1, x2,…, xp), both EFA and CFA 

specify a model to represent these variables as functions of model parameters and latent factors 

as follows (Bollen, 1989, pp. 233-237; Preacher et al., 2013, pp. 30-31): 

                                                 
8 In reality, researchers begin with data collection in order to test competing theories – parameterized as statistical 
models. Therefore, EFA can never fully escape prior information.   
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  , (2) 

where x is a p×1 vector containing p-observed variables from an individual unit of the data, Λ is 

a p×m matrix of factor loadings relating to the p-observed variables to m latent factors, and ξ is 

an m×1 vector of latent factors. In this model, δ, a p×1 vector, is composed of two components:  

δ = s + e, where s represents the specific variance associated with each variable and e is the 

remaining random component in x. Since both are errors in x with respect to measuring ξ, the 

latent factor, and assuming that both are uncorrelated with ξ and with each other, δ is the random 

errors of measurement.  The covariance matrix for x can be written: 

 , (3) 
 

where Σ is the p×p population covariance matrix, Φ is the covariance matrix of the latent factors 

ξ, and Θδ is the covariance matrix for the errors of measurement δ. Parameters in Λ, Φ, and Θδ 

are estimated using the observed data.  

The primary interest of EFA is the estimation of factor loadings in Λ. However, they are 

not uniquely identified, and the researcher will usually select a solution for Λ that maximizes 

some criterion of interpretability. The pattern of high and low factor loadings in Λ identifies 

groups of variables that depend on the same latent factor(s). In most applications of EFA, the 

most critical subjective decision is in retaining the ‘optimal’ number of m-latent factors that 

account for most of the observed covariation in x (i.e., ‘estimating’ the dimension of Λ).  

 Both EFA and CFA assumes E(δ) = 0 and E(ξδ’) = 0. However, EFA constraints Θδ to 

be a diagonal matrix (i.e., cov(δi,δj) = 0 for all i, j ∈{1, 2, … , p} & i ≠ j ), whereas CFA does not 

(Sorbom, 1989, p. 380). In fact, CFA leaves open the specification of Θδ to improve model fit 

(the ability to reproduce the observed covariance matrix Σ), a point I will elaborate on in the next 
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section. Given x, the researcher can fit ‘competing’ theoretically informed CFA models by 

changing the specification of Θδ. This is how CFA practice blurs the definition of 

‘confirmatory’.  

In summary, EFA and CFA differs substantially on the structure of Θδ. In practice, EFA 

results can inform the researcher about the optimal number of m-latent factors that can best 

explain the data, while CFA can ‘explore’ specification of Θδ to achieve the same modeling 

goals.     

4.4.3.3 Specification issues in Confirmatory Factor Analysis  

In a full GSEM, in which CFA is incorporated as a measurement sub-model, residential 

urban form is specified as a latent construct that captures the extent to which a residential 

neighborhood may influence transit usage and NMT. The measurement sub-model and 

conceptualizing urban form as a construct have been under-explored in the travel behavior 

literature (Golob, 2003; Van Acker et al., 2007; van Wee, 2009). Omitting a measurement sub-

model implicitly assumes that observed variables are measured without errors.  

In general terms, factor analysis is an approach to detect the existence of an unobserved 

factor/underlying construct using multiple observable indicators. CFA in the fifth approach is 

performed to examine the viability a theoretically informed model.  I specified a simple CFA 

measurement model based on the literature and EFA results without specifying any measurement 

error correlations, and thus restricting it to zero. Model fit in CFA refers to the ability of a model 

to reproduce the observed variance-covariance matrix. The chi-square (χ2) statistic measures 

whether the observed covariance matrix matches the model covariance matrix: if the χ2 statistic 

is not significant (i.e., value is closer to zero), fit is deemed acceptable.  
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Upon review of the model fit, modification of the model can be done by estimating an 

extra parameter. This can be implemented by allowing measurement errors to be correlated (i.e., 

re-specifying Θδ), as long as they are identified, and by entering additional information (urban 

form variables) into the model.  These re-specification steps are permitted to the extent that they 

are done judiciously (and satisfy statistical criterion) and in a theoretically defensible fashion 

(Bollen, 1989, pp. 233–235, 296–305; Sorbom, 1989; Kline, 2005, pp. 176–191; Acock, 2013, 

pp. 26-29).  Sorbom (1989) proposed using modification index, a statistical score based on 

Langrage multiplier tests, for detecting model misspecification and provided guidelines for CFA 

model re-specification (p. 384).8F

9 This approach estimates how much χ2, (measure of ‘badness’ of 

model fit), will be reduced when an extra parameter is estimated in the model (adding one degree 

of freedom). Based on these scores, a CFA analyst should consider adding a parameter that will 

improve model fit the most, so long as it is theoretically defensible. Sorbom (1989, p. 384) and 

Acock (2013, p. 27) suggest adding one parameter at a time since modification indices are not 

additive.  

The CFA measurement sub-model reflects the complex nature of the relationship 

between travel behavior and urban form. Whereas the parsimonious model restricts the 

covariance between land use indicators to zero, the CFA model allows measurement errors for 

population density, residential density, land use entropy (diversity), employment density, 

proportion of renter occupied housing units, transit access, street connectivity, and distance from 

employment sub-centers to co-vary. The basic idea of correlated measurement errors is that 

                                                 
9 Modification indices are tests for the statistical significance of the omitted paths in the CFA model. In Stata 
(version 13 and up), this technique can be implemented by the modification indices postestimation command (estat 
mindices) (Acock, 2013, pp. 26-27). 



 

105 
 

places with high population density tend to have a more diverse land use mix, employment 

density and transit access.  

4.4.4 GSEM specification 

This essay compares five modeling approaches that share a common conceptual model, 

but vary by how near-residence and near-workplace environments are measured and specified. 

The first four approaches do not include a latent factor measurement component.  They only 

have a structural component. The CFA specification is comprised of a structural component (that 

specifies the influence of urban form, vehicle ratio, and household characteristics on active 

commuting) and a latent factor measurement component (that links observed urban form 

variables to a latent factor).  

The structural component models the relationship between endogenous variables using a 

system of simultaneous equations (or conceptual path model) where the direction of causality is 

explicitly specified (Bollen, 1989; Kline, 2005; Acock, 2013). In a graphical representation 

(Figure 1), hypothesized causal paths (symbolized by arrows) depart from exogenous variables 

towards endogenous variables. The measurement component accounts for how the latent factor 

(residential urban form) is measured by observed variables; it is jointly estimated with the 

structural component via Confirmatory Factor Analysis (CFA) using quasi-maximum likelihood.  

The GSEM model (the fifth and most complex modeling approach) can be written: 

 (4) 

where:  
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(5A) 
(5B) 
(5C) 
(5D) 

 

In the above:  

 τ is an n×1 vector of latent (unobserved) continuous variables that reflect the utility of 

active commuting for each household; 

 v is an n×1 vector of household vehicle ratio; 

 f is an n×1 vector of urban form latent variables; 

 X is an n×k matrix of k household explanatory variables; 

 W is an n×7 matrix of workplace transit availability and street connectivity variables; 

 1, 2, and 3 are n×nk matrices.  for j{1,2,3}, with ji  the jis 

are unknown coefficients to estimate, and In is the n×n identity matrix; I imposed 

additional restrictions on the js	to over-identify the model: like Brownstone and Golob 

(2009) and Dillon, Saphores and Boarnet  (2015), non‐significant household explanatory 

variables were removed from the models;  

 Δ1 and Δ2 are n×n7 matrices. Δj =  for j {1,2}, with δji 	Ը the δji are 

unknown coefficients to estimate; 

 u is a (10n)×1 vector of stacked variables for residential urban form, which includes 

population density, housing unit density, employment density, % of renter occupied 

 j 1  ... j jk  n nΓ I I

 1 7 ... j j n nI I
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housing, land use entropy, inverse distance to the nearest sub-center9F

10, transit availability, 

bikeways density, street density, and intersection density; 

 u is an (10n)×n matrix given by , with i  (i{1,…,10}); 

 The  for i{1,2,3} and  are respectively n×1 and 10n×1 error vectors assumed to be 

uncorrelated; and  

 11, 12, 22, ji (j{1,2,3}, i{1,…,k}, in ), δij (j{1,2}, i{1,…,7}, in Δ)  and i 

(i{1,…,10} in u) are unknown model parameters to estimate; like SEM, GSEM 

minimizes the difference between the sample covariance and the covariance predicted by 

the model (Bollen, 1989). 

The system of equations (5A-C), which is shared by all five modeling approaches, reflects 

the causal paths shown in Figure 1: in equation (5C), near-residence urban form (f) is explained 

by household socio-economic characteristics—explicitly parameterizing residential selection; in 

equation (5B), vehicle-to-driver ratio (v) is explained by residential urban form, household socio-

economic characteristics, and workplace transit access and walkability—explicitly 

parameterizing vehicle endogeneity; and in equation (5A), transit usage and NMT (τ) is 

explained by residential urban form, vehicle-to-driver ratio, household socio-economic 

characteristics, and near-workplace transit access and walkability.  

In the first approach, near-residence urban form (f) only contains population density. Near-

workplace transit availability and walkability are represented by transit stops within ¼ miles and 

the gamma-connectivity index. In the second approach, all urban form variables enter as 

observed variables. Near-residence transit availability is represented by transit stops within ¼ 

                                                 
10 The distance to sub-centers accounts for the polycentric nature of Southern California’s urban structure, which has 
multiple employment centers. For detailed explanations of how sub-centers are determined, see Lee (2007) who 
analyzed sub-centers in Los Angeles and other major metropolitan areas. 

 u 1 10...  n nΛ I I

si
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miles and near-transit walkability is represented by gamma-connectivity index. In the third, 

density and walkability are represented by EFA-extracts. In the fourth, transit access and 

walkability are represented by Transit Score® and Walk Score® respectively.  

Equation (5D), the measurement component, defines residential urban form as a latent 

construct that depends on population density, housing unit density, employment density, % of 

renter occupied housing, inverse distance to the nearest sub-center, land use entropy, transit 

availability, bikeways density, street density, and intersection density. These variables are stored 

in the vector u. Moreover, u is a matrix of measurement coefficients (loadings) obtained by 

confirmatory factor analysis (CFA). 

 It follows that τ, v, and f are endogenous variables while the X and W matrices are 

exogenous socio-economic characteristics and the workplace urban form variables respectively 

(workplace location is assumed to be exogenous). Therefore, I have a recursive system with all 

causality paths directed at active commuting (Figure 1); since  are also assumed to be 

uncorrelated, the model is guaranteed to be identified (Bollen, 1989, pp. 95–98; Kline, 2005, pp. 

105–107). In GSEM, as in SEM, identification requires at least as many observations as free 

model parameters (df > 0) and every latent factor must be assigned a scale or restrict the variance 

to one (Bollen, 1989, pp. 103–104; Kline, 2005, p. 105). Unknown model parameters can then be 

estimated by minimizing the difference between observed covariance and the model-predicted 

covariance (Bollen, 1989; Kline, 2005). Table 4-5 presents a summary on how these GSEM 

urban form approaches are specified. 

 

 

si
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Table 4-5 Urban form modeling approaches using GSEM estimation 

Modelling 
Approach 

Density Transit Access Walkability 

(1) Population density n/a n/a 

(2) Population density Transit stops (¼ miles) Gamma Index 

(3) Density factor extract Transit stops (¼ miles) Connectivity factor extract 

(4) Population density Transit Score (from API) Walk Score (from API) 

(5) Urban form latent construct – jointly estimated as a CFA measurement (sub)component  

 

4.5 Results 

As noted earlier, the objectives of the research are (1) to assess several methods for 

measuring urban form features in the near-residence and near-workplace environments and (2) to 

assess the importance of these urban form features on transit use and NMT after accounting for 

the influence of these features on household vehicle ownership and residential selection. 

To achieve the first objective, I used factor analytic approaches, EFA and CFA, to help 

elucidate underlying dimensions of urban form. Reduced form logit models were fitted to 

explore the influence of urban form and household’s socio-demographic characteristics on the 

probability of transit usage and NMT, ignoring endogenous self-selection effects as a starting 

point for a more complex modeling approach. The second objective is met by fitting a recursive 

Generalized Structural Equations Model (GSEM) under five different methods in representing 

urban form as explained in the preceding section. Before I compare results from these five 

GSEM models, I will first report results from reduced EFA, CFA, and reduced form results.  



 

110 
 

4.5.1 Exploratory Factor Analysis results 

As described above, EFA helps elucidate the underlying unmeasurable dimensions of 

urban form. To assess the adequacy of these dimensions using a standard approach I first used 

Bartlett’s test of sphericity to check for the appropriate level of inter-correlation between the 

urban form measures. Inter-correlations have to be sufficiently high to limit the number of 

factors, but not too high to avoid multicollinearity, which I detect using the Kaiser-Meyer-Olkin 

(KMO) statistic – a measure of sampling adequacy. I also used Cronbach’s alpha to measure the 

reliability of my factors. For the EFA model to work well, Bartlett’s test should reject the null 

hypothesis that the correlation matrix is an identity matrix. The KMO statistic (which ranges 

between 0 and 1, with small values suggesting that the variables do not have enough in common) 

should be larger than 0.6 to be desirable. Finally, Cronbach’s alpha (which has a maximum value 

of 1) has been suggested to be at least 0.6 (Sangkapichai & Saphores, 2009, p. 86).10F

11 

Based on principal factor analysis (the default in Stata), two interpretable factors, 

walkability and density, were extracted based on the input of 10 urban form variables. To 

simplify interpretation, Table 4-6 lists EFA results in order of their factor loadings, first on 

walkability, then on density. From the loadings, it is clear that the first factor, which accounts for 

36% of the total variation, represents walkability. The second factor, density, accounts for 25.6% 

of the total variation – together walkability and density factors explained 61.6% of variation of 

10 variables. Three variables that don’t factor includes land use entropy (diversity index), street 

density, and bikeways density.  

Table 4-6 Factor loadings for walkability and density 

                                                 
11 Methodologists agree that there is no gold standard as to how high alpha reliability coefficient should be and that 
coefficients may not be generalizable to a particular sample. Kline (2005) suggests that 0.7 is adequate and is silent 
about values lower than that (p. 59).  
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 Factor Loadings on 

Walkability Factor Density Factor 

Alpha index 0.9812 
Gamma index 0.9774 
Link/Node Ratio (Beta Index) 0.9813 
Intersection density 0.7077 
Population density (10,000 person/mile2) 0.7562 
Housing units per square mile (thousands) 0.8477 
Employment per square mile (thousands) 0.6344 
Percentage of renter occupied housing 0.8078 
Inverse distance to nearest sub-center (in 1/miles) 0.4390 
Transit service within 0.25 miles 0.4635 

Variance explained (using oblique rotation) 36.0% 25.6% 

Note:  KMO statistic is 0.79 and the Bartlett’s test was highly significant (p<0.0001). Cronbach’s Alpha 
is 0.86 and 0.6 for Walkability and Density respectively.  
 

Factor analysis results provide a multi-variable description of the two hypothesized 

underlying dimensions of residential urban form: design (walkability or street connectivity) and 

density.  The extracted factors and their link to observed urban form variables are logical and 

interpretable. Finally, oblique rotation accounted for intercorrelation between the two dimensions 

of urban form; highly walkable residential locations are also dense.  The next section reports 

findings from Confirmatory Factor Analysis (CFA), using EFA results as a starting point for 

model specification. 

4.5.2 Confirmatory factor analysis results 

Before comparing GSEM results, I will discuss results from my CFA measurement 

model for urban form. First, I will discuss model fit (Table 4-7) before interpreting the loading 

coefficients. Model fit in CFA refers to the ability of a model to reproduce the observed 

variance-covariance matrix. The chi-square (χ2) statistic measures whether the observed 

covariance matrix matches the model covariance matrix: if the χ2 statistic is not significant, fit is 

deemed acceptable. A known disadvantage of the χ2 statistic is that it decreases with additional 
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model parameters, which favors over-parametrized models (Schermelleh-Engel et al., 2003, p. 

33).  

To avoid this shortcoming, incremental fit indices, which are not sensitive to sample size 

and penalize for over-parameterization, have been developed. I report here the Comparative Fit 

Index (CFI), which has been shown to have good power and robustness (Iacobucci, 2010, p. 97). 

It ranges from 0 (worst) to 1 (best), where values 0.97 indicate good fit and values between 

0.95 and 0.97 are acceptable (Schermelleh-Engel et al., 2003, p. 42). I also report the Tucker-

Lewis Index (TLI), which can be interpreted like the CFI (Schermelleh-Engel et al., 2003, p. 41).  

Finally, I report the root mean square error of approximation (RMSEA), which estimates 

the amount of error of approximation per model degree of freedom while taking sample size into 

account. A RMSEA value of zero implies exact fit, a value under 0.03 suggests excellent fit, and 

a value between 0.05 and 0.03 is considered good (Kline, 2005, p. 139). Table 5 shows that my 

residential urban form measurement model with correlated errors performs well, compared to my 

starting model without correlated errors, because it satisfies all five fit criteria considered. 

I used EFA results as a starting point for the CFA model specification and fitting a model 

for each of the underlying urban form dimensions (walkability and density). I followed the steps 

recommended by SEM literature to improve model fit as explained in the Methodology section 

(Bollen, 1989, pp. 233–235, 296–305; Sorbom, 1989; Kline, 2005, pp. 176–191; Acock, 2013, 

pp. 26-29). Unlike EFA, CFA allows measurement errors to be intercorrelated. This feature is 

useful to ‘confirm’ one important findings from EFA that the two underlying dimensions of 

urban form are indeed correlated. Table 4-7 reports five CFA variable specifications (models A-

E), both with and without correlated errors. 
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Comparison of fit indices between models with and without correlated errors offers 

further evidence that urban form variables are intercorrelated. Moreover, comparison of fit 

indices across variable specifications suggests that urban form has a strong statistical relationship 

with density (population, housing unit, percent of rental unit, employment, distance to 

employment centers, and transit service), diversity (land use entropy), and design/street 

connectivity (street density, bikeway density, and alpha index) variables, as described in model 

D with correlated errors. 
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Table 4-7  Fit Statistics for Residential Urban Form Measurement Model (CFA) 

 2 [df] (p-value)a 2/dfa CFIb TLIc RMSEAd

Critical values p> 0.05  < 3 > 0.95 > 0.95 < 0.05 

A. Density variables only      
Model without correlated errors 328.089 [9] (<0.001) 36.4544 0.9096 0.8493 0.1275 
Model with correlated errors 10.216 [5] (0.069) 2.0433 0.9985 0.9956 0.0219 
B. Density Variables and Diversity      
Model without correlated errors 624.706 [14] (<0.001) 44.6219 0.8401 0.7602 0.1414 
Model with correlated errors 10.897 [6] (0.092) 1.8162 0.9987 0.9955 0.0193 
C. Density, Diversity, and Bikeway Density 
Model without correlated errors 674.580 [20] (<0.001) 33.7290 0.8312 0.7637 0.1225 
Model with correlated errors 17.167 [9] (0.046) 1.9075 0.9979 0.9934 0.0204 
D. Density, Diversity, Bikeway Density, and Street Connectivity 
Model without correlated errors 1,430.805 [35] (<0.001) 40.8801 0.7524 0.6817 0.1352 
Model with correlated errors 20.482 [14] (0.116) 1.4630 0.9989 0.9963 0.0146 
E. Density, Diversity, and Street Connectivity (without Bikeway) 
Model without correlated errors 1,291.950 [27] (<0.001) 47.8500 0.7697 0.6929 0.1465 
Model with correlated errors 19.1562 [11] (0.058) 1.7415 0.9985 0.9951 0.0184 
Notes: 
a. The chi-square (χ2) statistic or chi-square goodness of fit, measures whether the observed covariance matrix is similar to the covariance matrix predicted by the model: if it is 
not significant, the model is regarded as acceptable. With small samples, the χ2 statistic lacks power so some researchers have proposed the relative chi-square (χ2 divided by the 
number of degrees of freedom, denoted here by χ2/df). This fit index reflects the ‘centeredness’ of the chi-square. 
b. The Comparative Fit Index (CFI) is an incremental fit index, which has been shown to have good power and robustness (Iacobucci, 2010, p. 97). It ranges from zero (worst fit) 
to one (best fit), where values above 0.97 indicate good fit and values between 0.95 and 0.97 denote acceptable fit (Schermelleh-Engel et al., 2003, p. 42). 
c. The Tucker-Lewis Index (TLI) compares χ2/df of the proposed model to χ2/df for a null model; it is interpreted like the CFI (Schermelleh-Engel et al., 2003, p. 41). 
d. The root mean square error of approximation (RMSEA) estimates the amount of error of approximation per model degree of freedom while taking sample size into account. A 
RMSEA value under 0.03 suggests excellent fit, and a value between 0.05 and 0.03 is considered good (Kline, 2005, p. 139). 
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Standardized loadings (regression coefficients when variance of the latent variable is 

constrained to be 1) from model D are presented in Table 4-8. All 10 urban form variables have 

highly significant loading coefficients (p<0.001) and, except for land use entropy and bikeway 

density, are positively correlated with urban form. Higher densities (population, residential, and 

employment) with more renters, higher transit availability, and street connectivity all contribute 

to a higher value of the urban form latent variable. A higher entropy value corresponds to higher 

land use diversity, which might preclude very large densities and explain the negative loading 

coefficient. Likewise, neighborhoods with higher densities may have less space for bikeways. 

The negative loading coefficient can be interpreted as a ‘correction’ to the contribution of 

densities to urban form.  

Table 4-8 Results of measurement model for urban form 

Urban form observed variables Standardized Loadings R2 

Population density 0.5873*** 0.3449 
Residential density 0.7581*** 0.5747 
Employment density 0.4808*** 0.2312 
Percentage renter occupied housing 0.6518*** 0.4248 
Inverse distance to employment sub-center 0.3327*** 0.1107 
Transit service within 0.25 mile  0.3490*** 0.1218 
Street density 0.3932*** 0.1546 
Alpha index 0.6518*** 0.4249 
Land Use Entropy  -0.0633*** 0.0040 
Bikeway density -0.1615*** 0.0261 
Note: all standard loadings have p-values <0.01. R2 displays the Bentler-Raykov squared multiple-correlation coefficient 
(Bentler & Raykov, 2000). 

 

 

4.5.3 Reduced form logistic Results: comparison of urban form specifications 

Reduced form logistic regression models were specified to examine the influence of 

urban form and household’s socio-demographic characteristics on the probability of transit usage 

and NMT. The purpose of this analysis is to assess relationships between transit usage and NMT 
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and the aforementioned independent variables, forgoing structural relationships that may exist. 

Results are useful as a starting point for a more rigorous and complex analysis.  

I developed a transit and NMT models for each of the following measures of travel 

behavior outcomes (results are provided in the appendix): 

 Probability of Indicating a Typical Commute Mode (Table A.1.1 reports transit models, 

Table A.1.2 reports NMT models) 

 Probability of Using a Mode for Commute Trip,  (Based on Trip Diary) (Table A.2.1 reports 

transit models, Table A.2.2 reports NMT models) 

 Probability of Using a Mode for Non-Work Trips, (Based on Trip Diary) (Table A.3.1 

reports transit models, Table A.3.2 reports NMT models) 

For each of these behavioral outcomes by mode, I generated the following six models to 

assess the influence of different urban form specifications on the probability of transit usage or 

NMT (Table 4-4): (1)  Residential population density as the only urban form metric, (2) #1 plus 

residential walkability (intersection density) and transit access (transit stops), (3) #2 plus 

workplace walkability (intersection density) and transit access (transit stops), (4) #3 plus all other 

UF variables representing the 3-Ds, (5), #1 plus residential and workplace Walk Score and 

Transit Score, and (6) EFA-based residential Density and Street Connectivity Factors plus 

residential transit access (transit stops) and workplace walkability (intersection density) and 

transit access (transit stops).  Before describing and comparing coefficient estimates, I address 

model performance.  
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4.5.3.1 Model fit 

I rely on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

to mechanistically assess model fit. Both try to balance good fit with parsimony using penalized-

likelihood criteria, where BIC penalizes complexity more heavily, depending on sample size. 

AIC’s penalty for complexity, on the other hand, does not depend on sample size. AIC and BIC, 

where smaller values are better, usually agree on which model performs better in explaining the 

data. However, when it div has a chance of choosing too big a model, regardless of sample size. 

Since power of the test is increasing in sample size, AIC, then, should be considered when false 

positive (Type I error) is more acceptable than a false negative.  

In explaining transit use for typical commute mode (Table A.1.1), model (6) which 

specifies urban form with EFA extracts, reports the lowest AIC value (BIC ranks 3rd). Model (1) 

using density as the only urban form metric does not perform well despite its simplicity (BIC 

ranks 4th, AIC ranks 5th). Model (3) which adds workplace urban form in explaining transit 

commute seems to fair rather well in AIC (ranks 2nd) and BIC (lowest).  

In explaining NMT commuting (walking or biking), under strictly mechanistic model 

selection, AIC favors model (5) which uses Walk Score and Transit Score at the residential 

neighborhood and at the workplace. BIC, on the other hand, favors the simplest model (1). In 

explaining transit commuting based on the travel survey data, BIC favors the simplest model (1), 

while AIC favors model (3) where workplace urban form enter as explanatory variables. In 

explaining active commuting based on travel survey data, BIC favors the simplest model (1), 

while AIC favors model (5) with Walk Score and Transit Score. However, under strict 

mechanistic interpretation, both AIC and BIC favor the simplest model when explaining 
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discretionary trips by transit and active travel. This may suggest that discretionary travel are 

dominated by household’s socio-demographic status.  

4.5.3.2 Socio-demographic variables 

A consistent predictor of transit usage and NMT for commuting and for discretionary 

trips is vehicle availability. Across all modes reported in the appendix, a higher number of 

vehicles per adults was associated with a lower likelihood of using these modes. This is largely 

consistent with the literature (Kuzmyak & Dill, 2012).   

The coefficient of income is negative and statistically significant in explaining typical 

commute by transit (Table A.1.1), but not according to the models estimated on travel diary data 

(Table A.2.1). While household size is consistently positive, the number of children is 

consistently negative. These findings suggest that, first, consistent with Kahn & Matsusaka 

(1997), transit is an inferior commuting mode as higher income households are associated with 

lower likelihood of transit commuting. Second, based on typical commute data (Table A.1.1), 

larger households are more likely to use transit for commuting but the number of children 

(younger than 16) reduces the likelihood transit commuting. However, the travel diary data 

(Table A.2.1) does not seem to agree. Interestingly, Hispanic households stand out among its 

socio-demographic peers to be more likely to use transit, both for commuting and discretionary 

trips, but not for typical commute by NMT (Table A.1.2) and discretionary NMT trips (Table 

A.3.2) travel.  

4.5.3.3 Urban form variables 

Comparison of coefficient estimates on urban form variables and how they vary from 

model to model offer interesting insights. In terms of transit usage (Tables 1.1.1, 1.2.1 and 1.3.1), 
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workplace, but not residential, transit accessibility (transit stops) is positively associated with 

transit usage for the commute, but not non-work discretionary trips. Transit Score, however, is 

significant and positively associated with the probability of reporting that transit was the 

“typical” commute mode (Table 1.1.1) but it is not significantly associated with the probability 

of actual transit usage based on the travel diary for the work commute (Table 1.2.1) or for transit 

usage for discretionary trips (Table 1.3.1). Although Houston et al. (2015) and Spears, Boarnet, 

and Houston (2015), suggest a positive association between residential transit availability and 

transit ridership, these previous studies did not assess the influence of near-workplace transit 

access. It is surprising that, after controlling for near-workplace transit access, near-resident 

transit access is no longer significant. This may suggests that near-workplace transit access 

dominates the effect on household’s commuting choices. 

Surprisingly, proximity to employment centers are significantly negative in explaining 

typical commute mode by transit (Table A.1.1), and it is not significant in explaining other 

travels. When transit availability is specified using Transit Score, population density is no longer 

statistically significant. EFA extract for density (under Model 6) is statistically significant and 

positive in explaining typical commute mode (Tables A.1.1. and A.1.2) and discretionary transit 

and NMT trips (Tables A.3.1 & A.3.2). This may be a clue that the algorithm responsible to 

generate Transit Score have considered population density such that it dominates the explanatory 

variable of population density as a stand-alone variable.  

In terms of NMT, urban form variables do not explain typical NMT commuting by much. 

Only population density is positively significant on discretionary NMT trips (Table A.3.2). Only 

intersection density in the workplace is estimated to be marginally significant on NMT 

commuting, both for typical commute and travel diary data (Tables A.1.2 & A.2.2). Results from 
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travel diary data are different: Workplace Walk Score is significantly positive but workplace 

Transit Score is marginally significant and negative. Perhaps the negative sign suggest a 

correction to Walk Score (Table A.3.2). Surprisingly, EFA extracts for near-residence 

walkability/street-connectivity does not seem to have any explanatory power in any of the 

models. Near-residence Walk Score is positive and significant only for discretionary NMT 

(Table A.3.2), perhaps because the amenities considered by Walk Score are weighted more 

heavily towards residential needs. This could also suggest that commuting trips choices are 

dominated by near-workplace urban form, but discretionary NMT is influenced by near-

residence walkability.   

All considered, these results suggest that typical commute and travel diary are generated 

by different processes. Furthermore, consistent with Dillon, Saphores, Boarnet (2015), trip 

purpose matters in transit usage and NMT.   

4.5.4 GSEM results: Comparison of path models 

GSEM models are used in this section to further assess the importance of these urban 

form features on transit use and NMT after accounting for the influence of these features on 

household vehicle ownership and residential selection. Consistent with the approach for 

reporting the reduced form models, this section reports results in this order:  

 Probability of Indicating a Typical Commute Mode (Table 4-9 reports transit models, Table 

4-10 reports NMT models) 

 Probability of Using a Mode for Commute Trips,  (Based on Trip Diary) (Table 4-11 reports 

transit models, Table 4-12 reports NMT models) 
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 Probability of Using a Mode for Non-Work Trips, (Based on Trip Diary) (Table 4-13 reports 

transit models, Table 4-14 reports NMT models) 

See Appendix B for the full regression tables. For each of these behavioral outcomes by 

mode, I examined five recursive GSEM models to assess the effect of urban form specifications 

in explaining transit usage or NMT (Table 4-5): (1) near-residence population density as the only 

urban form metric, (2) #1 plus residential walkability (gamma-connectivity index) and transit 

access (transit stops), (3) uses EFA extract for density and walkability, (4) uses Walk Score and 

Transit Score, and (5) urban form as a latent construct, jointly estimated in a CFA measurement 

sub-component. Before describing and comparing coefficient estimates, I address model 

performance.  

4.5.4.1 Model fit 

In the GSEM context, AIC and BIC are the appropriate information criteria to compare 

models. Unlike likelihood-ratio, Wald, and similar testing procedures, the models need not be 

nested to compare the information criteria; they just need to be estimated on the same set of 

dependent variables. Because they are based on the log-likelihood function, information criteria 

are available only after commands that report the log likelihood. In general, smaller is better: 

given two models, the one with the smaller AIC fits the data better than the one with the larger 

AIC. As with the AIC, a smaller BIC indicates a better-fitting model. Degrees of freedom 

corresponds to the number of parameters estimated by the model, an indicator of complexity.  

Each table compares five models that share the same conceptual path and thus posit the 

same behavioral structure. In all models for transit and NMT, both for commuting and 

discretionary travel, AIC and BIC favor the most simplistic model (1), where density is the only 

metric for urban form. EFA extracts and the CFA approach offer richer policy insights at a cost 
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of complexity. AIC and BIC values for the two approaches do not differ by much. Models using 

Walk Score and Transit Score to represent urban form do not offer a better fit compared to 

competing models, even after reducing estimation complexity. This might indicate presence of 

multicollinearity that these scores induce on population density.   

4.5.4.2 Coefficient estimates  

GSEM coefficient are structural parameters that, in unison, represent a theoretically-

informed behavioral process. In this research, I specified a system of equations to explicitly 

parameterize endogenous relationships between residential selection and vehicle ownership 

decisions on transit ridership and active travel, controlling for self-selection bias. Estimates of 

direct effects in the residential selection equation suggest that higher income households 

gravitate toward low density and car dependent neighborhoods that are not well served by transit.  

Coefficient estimates from the vehicle ownership equation suggest that higher income 

households tend to own more cars per licensed drivers. There are some evidence that households 

living in neighborhoods with high population density, greater walkability and greater transit 

access, are less likely to own cars.  

Coefficient estimates on the travel behavior estimation vary by mode and trip purpose. 

Households with a higher vehicle ratio are less likely to commute by transit or NMT. This effect 

is weaker on discretionary travel using NMT modes. Near-workplace transit availability seems to 

encourage transit commuting after accounting for its influence on vehicle ownership and 

residential selection. The CFA model reports a negative direct effect of near-workplace 

walkability (Table 4-9, column 5), which may indicate a correction factor to other urban form 
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metrics. However, the EFA model does not present this ambiguity (Table 4-9, column 3). In the 

EFA model, near-workplace walkability is not statistically significant.  

Comparing transit usage as participant-reported typical commute mode (Table 9.1.a) and 

transit commuting based on travel diary data (Table 4-11), I found that near-workplace transit 

retains significance in direct-effects, except when it is specified as Transit Score (column 4). 

Near-workplace walkability has a statistically significant direct effect on the probability of NMT 

commute (Table 4-12, row 6), but not in reporting NMT as typical commute mode (Table 4-11). 

Surprisingly, near-workplace walkability seems to play a role in home-based discretionary NMT 

trips (Table 4-14, row 6). This may indicate cases where households who use NMT tend to live 

near the workplace. Across five modeling approaches, there are no clear pattern of how urban 

form influences commuting and discretionary trips. However, the model with CFA (column 6) 

seems to suggest that, if the researcher is willing to assume that urban form can be represented as 

a single latent construct, measured with errors, the effect of various facets of land uses seems to 

be important in explaining transit use, but not so much for NMT. After controlling for residential 

and vehicle ownership endogeneities, urban form has an ambiguous direct effect on active 

commuting. Results vary by how urban form is specified and by source of travel data. Finally, 

there are some evidence that population density affect active travel for discretionary purposes 

(Table 4-14, first row).    
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Table 4-9 GSEM Results: Probability of Indicating Transit as the Typical Commute Mode 

Modelling Strategy/ 
UF Specification 

Standardized Density 
(1) 

Std. UF variables 
(2) 

EFA Factor extracts 
(3) 

Walk/Transit Scores 
(4) 

GSEM with CFA 
(5) 

Travel behavior equation (direct effects) 

Density / Urban Form 0.0655* 0.1054 0.0552*** 0.1137 0.6821*** 

Residential Transit .n/a 0.0607 0.5117 -0.0055 0.0157*** 

Residential Walkability .n/a -1.6940 0.0798 -0.0014 0.0281*** 

Vehicle ratio -2.2297*** -2.1707*** -2.1898*** -1.9468*** -2.0692*** 

Workplace Transit 0.8952*** 0.9078*** 0.9098*** 0.0363*** 0.8837*** 

Workplace Walkability -11.4149** 3.7045 0.9472 0.0090 -11.8069** 

Household Income -0.0119** -0.0104** -0.0121** -0.0131** -0.0084 

Vehicle ownership equation (Vehicle ratio) 

Density / Urban Form -0.0161*** -0.0027 -0.0115*** -0.0397*** -0.1246*** 

Residential Transit .n/a -0.0202 -0.1465 -0.0020*** -0.0029*** 

Residential Walkability .n/a -0.3260* 0.0075 -0.0001 -0.0051*** 

Workplace Transit 0.0044 0.0035 0.0039 -0.0001 0.0077 

Workplace Walkability -1.9992** -0.7441 -1.1108 -0.0005 -2.0177** 

Household Income 0.0029*** 0.0027*** 0.0028*** 0.0027*** 0.0023*** 

Residential selection equation (Density/Urban Form) 

Income → Density -0.0297*** -0.0094*** -0.0576*** -0.0094*** -0.0250*** 

Income → Transit .n/a -0.0036*** -0.0005*** -0.1692*** -0.0006*** 

Income → Walkability .n/a -0.0066*** -0.0027*** -0.1995*** -0.0010*** 

Model fit indices 

Log-Likelihood [df] -7,253.728 [55] -41,028.760[235] -14,372.248 [130] -23,779.179 [75] -15,266.751 [104] 

AIC 14,617.4561 82,527.5184 29,004.496 47,708.358 30,741.502 

BIC 14,930.2960 83,864.1977 29,743.935 48,134.958 31,333.054 

 Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the model.
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Table 4-10 GSEM Results: Probability of Indicating NMT as the Typical Commute Mode 

Modelling Strategy/ 
UF Specification 

Standardized Density 
(1) 

Std. UF variables 
(2) 

EFA Factor extracts 
(3) 

Walk/Transit Scores 
(4) 

GSEM with CFA 
(5) 

Travel behavior equation (direct effects) 

Density / Urban Form 0.0089 -0.0462 0.0149 0.0176 0.3629** 

Residential Transit .n/a -0.1576 -0.6986 0.0094 0.0084** 

Residential Walkability .n/a 22.1931** 0.1673 0.0122* 0.0151** 

Vehicle ratio -1.4647*** -1.4371*** -1.4615*** -1.4053*** -1.3386*** 

Workplace Transit -0.2974 -0.2907 -0.2858 -0.0112 -0.3097 

Workplace Walkability 26.2380 22.1931** 22.5301 0.0010 20.5118 

Household Income -0.0106 -0.0092 -0.0105 -0.0093 -0.0081 

Vehicle ownership equation (Vehicle ratio) 

Density / Urban Form -0.0161*** -0.0027 -0.0115*** -0.0397*** -0.1242*** 

Residential Transit .n/a -0.0203 -0.1465 -0.0020*** -0.0029*** 

Residential Walkability .n/a -0.3259* 0.0075 -0.0001 -0.0052*** 

Workplace Transit 0.0045 0.0036 0.0039 -0.0001 0.0077 

Workplace Walkability -1.9992** -0.7441 -1.1108 -0.0005 -2.0177** 

Household Income 0.0030*** 0.0028*** 0.0028*** 0.0027*** 0.0023*** 

Residential selection equation (Density/Urban Form) 

Income → Density -0.0297*** -0.0094*** -0.0576*** -0.0094*** -0.0248*** 

Income → Transit .n/a -0.0036*** -0.0005*** -0.1692*** -0.0006*** 

Income → Walkability .n/a -0.0066*** -0.0027*** -0.1995*** -0.0010*** 

Model fit indices 

Log-Likelihood [df] -7,220.452 [55] -40,998.421 [235] -14,343.850 [130] -23,730.586 [75] -15,266.751 [104] 

AIC 14,550.905 82,466.842 28,947.700 47,611.172 30,741.502 

BIC 14,863.745 83,803.522 29,687.140 48,037.772 31,333.054 

 Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the model. 
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Table 4-11 GSEM Results: Probability of Using Transit for Commute Trip (Based on Trip Diary) 

Modelling Strategy/ 
UF Specification 

Standardized Density 
(1) 

Std. UF variables 
(2) 

EFA Factor extracts 
(3) 

Walk/Transit Scores 
(4) 

GSEM with CFA 
(5) 

Travel behavior equation (direct effects) 

Density / Urban Form 0.0368 -0.1081 0.0395 0.0446 0.8425*** 

Residential Transit .n/a 0.0377 0.3137 -0.0054 0.0194*** 

Residential Walkability .n/a -1.7686 0.5144 0.0069 0.0350*** 

Vehicle ratio -3.3254*** -3.1965*** -3.2492*** -3.0476*** -3.0941*** 

Workplace Transit 0.6508*** 0.6639*** 0.6682*** 0.0094 0.6536*** 

Workplace Walkability -35.4994 -24.6957 -40.9130 0.0173* -53.1695 

Household Income -0.0100 -0.0076 -0.0097 -0.0088 -0.0051 

Vehicle ownership equation (Vehicle ratio) 

Density / Urban Form -0.0161*** -0.0027 -0.0115*** -0.0397*** -0.1245*** 

Residential Transit .n/a -0.0203 -0.1465 -0.0020*** -0.0029*** 

Residential Walkability .n/a -0.3259* 0.0075 -0.0001 -0.0052*** 

Workplace Transit 0.0045 0.0036 0.0039 -0.0001 0.0078 

Workplace Walkability -1.9992** -0.7441 -1.1108 -0.0005 -2.0194** 

Household Income 0.0030*** 0.0028*** 0.0028*** 0.0027*** 0.0023*** 

Residential selection equation (Density/Urban Form) 

Income → Density -0.0297*** -0.0094*** -0.0576*** -0.0094*** -0.0249*** 

Income → Transit .n/a -0.0036*** -0.0005*** -0.1692*** -0.0006*** 

Income → Walkability .n/a -0.0066*** -0.0027*** -0.1995*** -0.0010*** 

Model fit indices 

Log-Likelihood [df] -7,091.057 [55] -41,028.760[235] -14,372.248 [130] -23,607.217 [75] -15,266.751 [104] 

AIC 14,292.113 82,527.5184 29,004.496 47,364.434 30,741.502 

BIC 14,604.953 83,864.1977 29,743.935 47,791.034 31,333.054 

 Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the model.
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Table 4-12 GSEM Results: Probability of Using NMT for Commute Trip (Based on Trip Diary) 

Modelling Strategy/ 
UF Specification 

Standardized Density 
(1) 

Std. UF variables 
(2) 

EFA Factor extracts 
(3) 

Walk/Transit Scores 
(4) 

GSEM with CFA 
(5) 

Travel behavior equation (direct effects) 

Density / Urban Form 0.0239 0.0151 0.0179 0.1349** 0.2910 

Residential Transit .n/a -0.1025 -0.4942 -0.0124 0.0067 

Residential Walkability .n/a -3.0940 0.1638 0.0151* 0.0121 

Vehicle ratio -2.0800*** -2.0827*** -2.0933*** -2.1174*** -2.0721*** 

Workplace Transit -0.0347 -0.0260 -0.0247 -0.0187** -0.0198** 

Workplace Walkability 64.2736** 62.9698* 61.2229** 0.0275*** 0.0288*** 

Household Income 0.0052 0.0048 0.0052 0.0062 0.0066 

Vehicle ownership equation (Vehicle ratio) 

Density / Urban Form -0.0161*** -0.0027 -0.0115*** -0.0397*** -0.1245*** 

Residential Transit .n/a -0.0203 -0.1465 -0.0020*** -0.0029*** 

Residential Walkability .n/a -0.3259* 0.0075 -0.0001 -0.0052*** 

Workplace Transit 0.0045 0.0036 0.0039 -0.0001 0.0077 

Workplace Walkability -1.9992** -0.7441 -1.1108 -0.0005 -2.0219** 

Household Income 0.0030*** 0.0028*** 0.0028*** 0.0027*** 0.0023*** 

Residential selection equation (Density/Urban Form) 

Income → Density -0.0297*** -0.0094*** -0.0576*** -0.0094*** -0.0248*** 

Income → Transit .n/a -0.0036*** -0.0005*** -0.1692*** -0.0006*** 

Income → Walkability .n/a -0.0066*** -0.0027*** -0.1995*** -0.0010*** 

Model fit indices 

Log-Likelihood [df] -7,091.057 [55] -40,896.643 [235] -14,239.530 [130] -23,624.947 [75] -15,131.675 [104] 

AIC 14,292.113 82,263.286 28,739.059 47,399.894 30,471.349 

BIC 14,604.953 83,599.966 29,478.499 47,826.494 31,062.901 

 Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the model. 
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Table 4-13 GSEM Results: Probability of Using Transit for Non-Work Discretionary Trips (Based on Trip Diary) 

Modelling Strategy/ 
UF Specification 

Standardized Density 
(1) 

Std. UF variables 
(2) 

EFA Factor extracts 
(3) 

Walk/Transit Scores 
(4) 

GSEM with CFA 
(5) 

Travel behavior equation (direct effects) 

Density / Urban Form 0.0488* 0.2899*** 0.0409** 0.0877 0.4714** 

Residential Transit .n/a -0.1403 -0.5312 0.0158 0.1226** 

Residential Walkability .n/a 1.8807 0.1947 -0.0026 0.0468** 

Vehicle ratio -2.5227*** -2.7471*** -2.5598*** -2.4597*** -2.4147*** 

Workplace Transit -0.1669 -0.1644 -0.1523 -0.0006 -0.1311 

Workplace Walkability 45.4555 66.9505* 43.8533 0.0082 48.8592 

Household Income -0.0116* -0.0091 -0.0105* -0.0107* -0.0092 

Vehicle ownership equation (Vehicle ratio) 

Density / Urban Form -0.0161*** -0.0027 -0.0115*** -0.0397*** -0.1320*** 

Residential Transit .n/a -0.0203 -0.1465 -0.0020*** -0.0324*** 

Residential Walkability .n/a -0.3259* 0.0075 -0.0001 -0.0124*** 

Workplace Transit 0.0045 0.0036 0.0039 -0.0001 0.0077 

Workplace Walkability -1.9992** -0.7441 -1.1108 -0.0005 -2.0216** 

Household Income 0.0030*** 0.0028*** 0.0028*** 0.0027*** 0.0023*** 

Residential selection equation (Density/Urban Form) 

Income → Density -0.0297*** -0.0094*** -0.0576*** -0.0094*** -0.0264*** 

Income → Transit .n/a -0.0036*** -0.0005*** -0.1692*** -0.0065*** 

Income → Walkability .n/a -0.0066*** -0.0027*** -0.1995*** -0.0025*** 

Model fit indices 

Log-Likelihood [df] -7,188.901 [55] -40,962.016 [235] -14,311.027 [130] -23,698.375 [75] -15,204.194 [104] 

AIC 14,487.802 82,394.032 28,882.054 47,546.750 30,616.389 

BIC 14,800.642 83,730.711 29,621.494 47,973.350 31,207.941 

 Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not estimated in the model.



 

 
 

129 

Table 4-14 GSEM Results: Probability of Using NMT for Non-Work Discretionary Trips (Based on Trip Diary) 

Modelling Strategy/ 
UF Specification 

Standardized Density 
(1) 

Std. UF variables 
(2) 

EFA Factor extracts 
(3) 

Walk/Transit Scores 
(4) 

GSEM with CFA 
(5) 

Travel behavior equation (direct effects) 

Density / Urban Form 0.0352* 0.1344* 0.0210* 0.0659 0.3342*** 

Residential Transit .n/a -0.0387 -0.1894 0.0039 0.0874*** 

Residential Walkability .n/a 1.1039 0.1214 0.0057** 0.0333*** 

Vehicle ratio -0.5414*** -0.5188*** -0.5127*** -0.5327*** -0.4886*** 

Workplace Transit -0.0694 -0.0742 -0.0710 -0.0018 -0.0765 

Workplace Walkability 33.7564** 29.3096* 29.0479* 0.0026 29.7760* 

Household Income 0.0008 0.0013 0.0013 0.0016 0.0028 

Vehicle ownership equation (Vehicle ratio) 

Density / Urban Form -0.0161*** -0.0027 -0.0115*** -0.0397*** -0.1323*** 

Residential Transit .n/a -0.0203 -0.1465 -0.0027*** -0.0326*** 

Residential Walkability .n/a -0.3259* 0.0075 -0.0001 -0.0124*** 

Workplace Transit 0.0045 0.0036 0.0039 -0.0001 0.0078 

Workplace Walkability -1.9992** -0.7441 -1.1108 -0.0005 -2.0173** 

Household Income 0.0030*** 0.0028*** 0.0028*** 0.0030*** 0.0023*** 

Residential selection equation (Density/Urban Form) 

Income → Density -0.0297*** -0.0094*** -0.0576*** -0.0094*** -0.0264*** 

Income → Transit .n/a -0.0036*** -0.0005*** -0.1692*** -0.0065*** 

Income → Walkability .n/a -0.0066*** -0.0027*** -0.1995*** -0.0025*** 

Model fit indices 

Log-Likelihood [df] -8,319.295 [55] -42,090.309 [235] -15,438.143 [130] -24,825.239 [75] -16,331.083 [104] 

AIC 16,748.589 84,650.617 31,136.287 49,800.478 32,870.166 

BIC 17,061.429 85,987.297 31,875.726 50,227.078 33,461.718 

 Note: * p < 0.10, ** p < 0.05, *** p < 0.01. n/a means parameter not es
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4.6 Discussion and conclusions  

4.6.1 Place in the literature 

Consistent with Cervero & Kockelman (1997) and Cervero & Duncan (2003), my EFA 

results indicate that urban form can be summarized into two factors; density and design. Similar 

to Cervero & Kockelman (1997), several of my urban form variables did not factor. In particular, 

diversity, represented here by land use entropy, does not factor. However, Cervero & Kockelman 

(1997), who used 7 variables to represent land use diversity at the trip-origin, also found the 

same result.    

My CFA results offer evidence that urban form can be viably represented as a single 

latent factor. This latent factor can be measured by density, diversity, connectivity (design), and 

bikeway density variables, when these variables are assumed to be correlated. As noted in the 

preceding methodology section, CFA allows measurement errors to be correlated while EFA 

does not. This result offers evidence that urban form influences travel because the configuration 

of these variables (density, diversity, connectivity) affects the time cost of travel and the relative 

cost across modes (Boarnet & Crane, 2001, p. 73). However, path model coefficient estimates on 

the CFA model sometimes offer counterintuitive evidence on the effect of urban form on travel 

behavior.  

Results from the GSEM path models, which account for residential and vehicle-choice 

endogeneities, are generally consistent with the active transportation literature. Households 

living in neighborhoods with higher density, more transit access, more connected street network, 

and are working in a transit-rich workplace are more likely to commute using transit and NMT. 

Everything else hold equal, these households typically own fewer vehicles per licensed drivers 
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and are poorer compared to households who are less likely to active-commute. Households living 

in high density neighborhoods with features that support active commute tend to be members of 

lower income groups. They are also more likely to buy fewer vehicles for each licensed drivers, 

consistent with Kuzmyak & Dill (2012).  

While these models report coefficients that are similar in sign and statistical-significance, 

with a notable exception on the model where all measures of urban form are entered as observed 

variables, the size of estimates are different. Comparison of results from different trip purposes 

and source of travel data suggest that trip purposes matter. Future work might want to consider 

specification of travel behavior outcome such as count of household’s transit trips, etc.  

Urban form in the CFA framework can also be interpreted as an index/unit of account for 

housing goods. Housing is a bundled good. In California, housing supply restrictions exist, 

distorting housing price. Urban form might be adequate to capture variation in the context of 

travel behavior.  

Finally, GSEM results offer evidence that typical commute and travel diary data were 

generated by discernably different processes. Each has its own deficiency in portraying travel 

behavior. For example, aspirational factors might confound how a household reports their typical 

commute, but happenstance might affect household travel on the survey date and thus not 

provide an accurate representation of travel behavior. Happenstance is a form of randomness that 

can be assumed to cancel out on average (centers at zero). At any rate, coefficient estimates from 

both regressions can be used as bounds to inform planning decisions.   
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4.6.2 Research limitations  

This research presents results on how urban form modeling strategies explain transit 

usage and NMT using Los Angeles and Orange Counties sub-sample of the 2009 NHTS which 

oversampled Whites and Asians and undersampled Hispanics and Blacks. In the vast travel 

behavior literature, urban form has been specified in numerous ways – this research only 

considers a subset of those. In particular, with more measures for land use diversity, the EFA 

model might offer different insights. Some urban form measures, such as the connectivity index, 

was calculated at the block group level, while others, such as transit stops, were calculated within 

a ¼ mile buffer. It is unclear how to reconcile the two. Furthermore, ¼ mile buffer may not be 

optimal to capture transit usage. Future research should consistently use buffers with a well-

defined distance to construct a household’s neighborhood. Another approach would be to 

conduct the analysis at the trip level such that it can inform trip-chaining behaviors.  

Walk Score and Transit Score hold promise to be used jointly in travel behavior studies.  

They are relatively convenient to use, but at a cost of opacity. Furthermore, Transit Score has not 

been thoroughly studied like Walk Score. Future research should expound upon Transit Score – 

taking into account how near-residence transit stop connects to destinations.  

While correlated errors dramatically improve CFA model fit (Table 7.D.), this modeling 

approach treads on the boundary between theoretical justification and overfitting. Specifying a 

multilevel CFA may relax some of these correlated errors and directly test for the existence of 

structural ordering in urban form latent factors. Future work should consider multilevel CFA to 

expound upon the multidimensionality of urban form in travel behavior.  

Lastly, future research should do the utmost to overcome historically-disadvantaged 

community under-sampling in travel datasets. This is important for at least two reasons: (1) 
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results may not be generalizable to the population, and most importantly (2) transportation and 

planning organizations rely on these data for policy planning purposes. Bad data led to bad 

statistics led to bad planning. Planning with bad data only reinforces disenfranchisement.   

4.6.3 Implication for policy 

Cervero & Kockelman (1997) contends that it is “futile to attempt to isolate unique 

contribution of each and every observed variable that measures fine aspects of urban form” (p. 

210). This research presents results from multiple analytical perspectives. Results offer some 

evidence of the importance of workplace urban form in promoting transit usage and NMT 

commuting. This suggests that MPOs should consider improving transit access and walkability 

in job centers. While results are preliminary, it consistently report the importance of near-

workplace urban features in promoting transit and NMT.  

The fact that urban form has little direct effect on travel should not deter policy promoting 

transit investment and improvement. When the policy goal is to reduce car travel, policies that 

reduces car ownership (and dependency) should count as a policy impact. Although vehicle 

ownership (or lack thereof) seems to consistently explain transit use and active travel, MPOs 

should not stop investing in transit improvements. Instead, this as a signal that transit service and 

housing choices should be improved to assist the travel needs of income-restricted households.  
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5 Conclusions 

In this dissertation, I presented three essays that used structural equation modeling 

techniques to tease out the relationship between urban form, driving patterns, ownership of 

alternative fuel vehicles, transit use, and active commuting. I focused on urban California where 

land use regulations have been used to pursue ambitious policy goals. Also, while urban 

Californians tend to favor progressive environmental policies, they drove a lot more compared to 

their out-of-state peers. My results have important policy implications for land use, 

transportation policies, and other incentives at the local and state levels. 

First, my results show that trip purpose matters: in the short run, households drive 

0.171% less for non-work trips when gas prices increase by 1%, while work trips are not 

responsive to gasoline price changes. Just considering total VMT in informing policies would 

mistakenly suggest that driving patterns are not responsive to gasoline price changes. In the short 

term, higher fuel prices reduce discretionary driving such as shopping and recreational trips, but 

they do not affect non-discretionary driving such as commuting trips. Second, results suggest 

that policies that seek to increase transit service and housing opportunities near employment 

centers will reduce driving. Third, as mentioned in Chapter 3, findings indicate households who 

live closer to a freeway with HOV lanes, work closer to parking lots with AFV privileges, and 

are likely to support pro-environmental measures are more likely to own AFVs. However, these 

households are also likely to drive more than if they had conventional vehicles. While expansion 

of HOV lanes and parking incentives will increase the adoption of alternative fuel vehicles, its 

utilization will also increase although the effect is relatively small. These results imply that HOV 

and parking incentives come with unintended consequences. Increasing awareness about 

environmental problems might yield higher policy pay-off. Fourth, as mentioned in Chapter 4, a 
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household’s socio-demographic status affects travel behavior directly and indirectly through 

residential location and vehicle ownership choices. Lower income, younger, and smaller 

households are more likely to choose a dense, pedestrian friendly, and transit rich neighborhood.  

Land use interventions have been advocated to partly rein in automobile use, boost transit 

ridership, and encourage more non-motorized travel in order to improve livability of urban areas. 

These policies were premised under the distortion in the transportation markets (quantity of 

miles driven, transit use, vehicle ownership, etc.). However, my dissertation has yet to discuss 

the distortion in the housing markets (i.e. supply restriction, public goods externalities & 

unpriced amenities) that may have affected residential choice patterns. Observed distortion in the 

transportation markets (i.e. congestion; miles-driven is larger than the social optimal) may indeed 

signal distortion in the housing market. Households may actually prefer to live closer to their 

workplace or to a transit node in order to minimize commute distance, time or costs, but housing 

prices might be restrictively expensive or lack nearby amenities that are bundled in housing 

goods. Unpriced congestion could also distort the housing market. Further research should 

consider a theoretical framework to jointly address these issues and to investigate whether land 

use interventions carry unintended consequences. 

Future empirical work should consider using a panel design to better control for time-

invariant factors affecting residential location and vehicle ownership decisions. A panel design 

would also allow testing for feedback between travel behavior and vehicle ownership decisions 

as well as intra-household vehicle substitution behavior in which households with multiple 

vehicles could choose to drive different vehicles in respond to price changes. A natural follow up 

would be to explore more in depth how households adjust their travel behavior in response to 

increases in gasoline prices: Do they organize their trips differently, forego travel altogether, or 
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do they use other modes? Another possibility would be to refine the residential selection 

component by exploring how households choose neighborhoods based on amenities such as local 

public school quality and other physical neighborhood features. 

Overall, my dissertation research helps improve our understanding of linkages between 

urban form, travel behavior, congestion, and air pollution. I hope that my work will inform 

public policy at the local and state levels.  

 

  


