2020 INTERIM REVISIONS

INSTRUCTIONS AND INFORMATION

General

AASHTO has issued proposed interim revisions to the Manual for Bridge Evaluation, Third Edition (2018). This packet contains the revised pages. They are designed to replace the corresponding pages in the book.

Affected Articles

Underlined text indicates revisions that were approved in 2019 by the AASHTO Committee on Bridges and Structures. Strikethrough text indicates any deletions that were likewise approved by the Committee. A list of affected articles is included below.

All interim pages are displayed on a blue background to make the changes stand out when inserted in the third edition binder. They also have a page header displaying the page number affected and the interim publication year. Please note that these pages may also contain nontechnical (i.e., editorial) changes made by AASHTO publications staff; any changes of this type will not be marked in any way so as not to distract the reader from the technical changes.

2020 Changed Articles

SECTION 6: LOAD RATING
6A.6.10
6B.5.2.1
6B.5.3.1

APPENDIX A
Example A1—Replaced in its entirety
Example A7—Replaced in its entirety

2020 Added Articles

SECTION 6: LOAD RATING
6A.6.10
C6A.6.10
6A.6.10.1
6A.10
This page intentionally left blank.
6A.5.1—Concrete... 6-37
6A.5.2—Reinforcing Steel ... 6-37
6A.5.3—Prestressing Steel ... 6-38
6A.5.4—Limit States .. 6-38
6A.5.5—Resistance Factors ... 6-38
6A.5.6—Minimum Reinforcement .. 6-38
6A.5.7—Maximum Reinforcement .. 6-38
6A.5.8—Evaluating for Shear .. 6-39
6A.5.9—Secondary Effects from Prestressing ... 6-40
6A.5.10—Temperature, Creep, and Shrinkage Effects .. 6-40
6A.5.11—Rating of Segmental Concrete Bridges .. 6-40
6A.5.11.1—Scope ... 6-40
6A.5.11.2—General Rating Requirements .. 6-40
6A.5.11.3—Application of Vehicular Live Load .. 6-40
6A.5.11.4—Design Load Rating .. 6-40
6A.5.11.5—Service Limit State .. 6-40
6A.5.11.6—Permit Load Rating .. 6-40
6A.5.11.7—System Factors: \phi_s .. 6-40
6A.5.11.8—Condition Factor: \phi_c .. 6-40
6A.5.11.9—Evaluation for Shear and Torsion ... 6-41
6A.5.12—Rating of Reinforced Concrete Box Culverts .. 6-41
6A.5.12.1—Scope ... 6-41
6A.5.12.2—General Rating Requirements .. 6-41
6A.5.12.3—Structural Analysis of Box Culverts .. 6-41
6A.5.12.4—Load Rating Equation for Box Culverts .. 6-41
6A.5.12.5—Limit States .. 6-41
6A.5.12.6—Resistance Factors ... 6-41
6A.5.12.7—Condition Factor: \phi_s .. 6-41
6A.5.12.8—System Factor: \phi_c ... 6-42
6A.5.12.9—Materials ... 6-42
6A.5.12.10—Loads for Evaluation .. 6-42
6A.5.12.10.1—Dead Loads .. 6-42
6A.5.12.10.2—Earth Pressure .. 6-42
6A.5.12.10.2a—Vertical Earth Pressure: EV ... 6-42
6A.5.12.10.2b—Lateral Earth Pressure: EH ... 6-42
6A.5.12.10.2c—Uniform Surcharge Loads: ES .. 6-42
6A.5.12.10.3—Live Loads ... 6-43
6A.5.12.10.3a—Live Load Distribution .. 6-43
6A.5.12.10.3b—Dynamic Load Allowance: IM .. 6-43
6A.5.12.10.3c—Live Load Surcharge: LS .. 6-43
6A.6—STEEL STRUCTURES

6A.6.1—Scope ... 6-55
6A.6.2—Materials .. 6-55
 6A.6.2.1—Structural Steels ... 6-55
 6A.6.2.2—Pins .. 6-56
 6A.6.2.3—Wrought Iron ... 6-56
6A.6.3—Resistance Factors .. 6-56
6A.6.4—Limit States .. 6-57
 6A.6.4.1—Design-Load Rating ... 6-57
 6A.6.4.2—Legal Load Rating and Permit Load Rating 6-57
 6A.6.4.2.1—Strength Limit State 6-57
 6A.6.4.2.2—Service Limit State 6-57
6A.6.5—Effects of Deterioration on Load Rating 6-59
6A.6.6—Tension Members .. 6-62
 6A.6.6.1—Links and Hangers ... 6-62
 6A.6.6.2—Eyebars .. 6-62
6A.6.7—Noncomposite Compression Members 6-63
6A.6.8—Combined Axial Compression and Flexure 6-64
6A.6.9—I-Sections in Flexure ... 6-64
 6A.6.9.1—General .. 6-64
 6A.6.9.2—Composite Sections ... 6-65
 6A.6.9.3—Non-Composite Sections 6-66
 6A.6.9.4—Encased I-Sections ... 6-66
 6A.6.9.5—Cross-Section Proportion Limits 6-66
 6A.6.9.6—Riveted Members .. 6-66
 6A.6.9.7—Diaphragms and Cross-Frames 6-66
6A.6.10—Evaluation for Shear .. 6-67
 6A.6.10.1—End Panels ... 6-67
6A.6.11—Box Sections in Flexure 6-67.2
 6A.6.11.1—Diaphragms and Cross-Frames 6-67.2
6A.6.12—Evaluation of Critical Connections 6-67.2
 6A.6.12.1—General .. 6-67.2
 6A.6.12.2—Bearing-Type Connections 6-68
 6A.6.12.3—Slip-Critical Connections 6-68
 6A.6.12.4—Pinned Connections .. 6-68
 6A.6.12.5—Riveted Connections .. 6-68
 6A.6.12.5.1—Rivets in Shear ... 6-68
 6A.6.12.5.2—Rivets in Shear and Tension 6-70
 6A.6.12.6—Gusset Plates ... 6-70
 6A.6.12.6.1—Resistance Reduction for DL/LL Ratio 6-71
 6A.6.12.6.2—Fastener Shear Resistance 6-71
 6A.6.12.6.3—Bolt Slip Resistance 6-73
 6A.6.12.6.4—Bearing Resistance at Fastener Holes 6-74
 6A.6.12.6.5—Multilayered Gusset and Splice Plates 6-74
 6A.6.12.6.6—Gusset Plate Shear Resistance 6-75
 6A.6.12.6.7—Gusset Plate Compressive Resistance 6-76
 6A.6.12.6.8—Gusset Plate Tensile Resistance 6-78
 6A.6.12.6.9—Chord Splices ... 6-80
6B.2—RATING LEVELS ... 6-109
 6B.2.1—Inventory Rating Level .. 6-109
 6B.2.2—Operating Rating Level .. 6-109

6B.3—RATING METHODS ... 6-109
 6B.3.1—Allowable Stress: AS ... 6-109
 6B.3.2—Load Factor: LF .. 6-109

6B.4—RATING EQUATION ... 6-110
 6B.4.1—General .. 6-110
 6B.4.2—Allowable Stress .. 6-111
 6B.4.3—Load Factor .. 6-111

6B.5—NOMINAL CAPACITY: C ... 6-111
 6B.5.1—General .. 6-111
 6B.5.2—Allowable Stress Method ... 6-111
 6B.5.2.1—Structural Steel .. 6-112
 6B.5.2.1.1—Combined Stresses .. 6-132
 6B.5.2.1.2—Batten Plate Compression Members ... 6-132
 6B.5.2.2—Wrought Iron ... 6-132
 6B.5.2.3—Reinforcing Steel .. 6-133
 6B.5.2.4—Concrete .. 6-133
 6B.5.2.4.1—Bending .. 6-133
 6B.5.2.4.2—Columns ... 6-134
 6B.5.2.4.3—Shear (Diagonal Tension) .. 6-135
 6B.5.2.5—Prestressed Concrete ... 6-135
 6B.5.2.6—Masonry ... 6-135
 6B.5.2.7—Timber .. 6-137
 6B.5.3—Load Factor Method ... 6-138
 6B.5.3.1—Structural Steel .. 6-138
 6B.5.3.2—Reinforced Concrete ... 6-140
 6B.5.3.3—Prestressed Concrete ... 6-140

6B.6—LOADINGS ... 6-142
 6B.6.1—Dead Load: D ... 6-142
 6B.6.2—Rating Live Load ... 6-142
 6B.6.2.1—Wheel Loads (Deck) .. 6-143
 6B.6.2.2—Truck Loads .. 6-143
 6B.6.2.3—Lane Loads .. 6-144
 6B.6.2.4—Sidewalk Loadings .. 6-145
 6B.6.2.5—Live Load Effects: L ... 6-145
 6B.6.3—Distribution of Loads ... 6-145
 6B.6.4—Impact: I .. 6-145
 6B.6.5—Deflection ... 6-146
 6B.6.6—Longitudinal Loads ... 6-146
 6B.6.7—Environmental Loads ... 6-146
 6B.6.7.1—Wind .. 6-146
 6B.6.7.2—Earthquake .. 6-146
 6B.6.7.3—Temperature, Creep, and Shrinkage ... 6-146

© 2020 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
6B.6.7.4—Stream Flow ... 6-147
6B.6.7.5—Ice Pressure ... 6-147
6B.6.7.6—Permanent Loads Other Than Dead Loads 6-147

6B.7—POSTING OF BRIDGES .. 6-147
6B.7.1—General ... 6-147
6B.7.2—Posting Loads ... 6-148
6B.7.3—Posting Analysis ... 6-153
6B.7.4—Regulatory Signs ... 6-153
6B.7.5—Speed Limits ... 6-154

6B.8—PERMITS .. 6-154
6B.8.1—General ... 6-154
6B.8.2—Routine Permits ... 6-154
6B.8.3—Controlled Permits ... 6-155
6B.8.4—Escorted Permits ... 6-155

APPENDIX A6B .. 6-156
APPENDIX B6B .. 6-157
APPENDIX C6B—LIVE LOAD MOMENTS ON LONGITUDINAL STRINGERS OR GIRDERs 6-158

APPENDIX D6B—STRINGER LIVE LOAD REACTIONS ON TRANSVERSE FLOOR BEAMS AND CAPS (INTERMEDIATE TRANSVERSE BEAMS) (SIMPLE SPAN ONLY) .. 6-160

APPENDIX E6B—STRINGER LIVE LOAD REACTIONS ON TRANSVERSE FLOOR BEAMS AND CAPS (END TRANSVERSE BEAMS) (SIMPLE SPAN ONLY) .. 6-162

APPENDIX F6B—FORMULAS FOR MAXIMUM SHEAR AT ANY PANEL POINT (NO IMPACT INCLUDED) (SIMPLE SPAN ONLY) .. 6-164

APPENDIX G6B—FORMULAS FOR MAXIMUM SHEAR AT ANY POINT ON SPAN (NO IMPACT INCLUDED) (SIMPLE SPANS ONLY) .. 6-165

APPENDIX H6B—FORMULAS FOR MAXIMUM SHEAR AT ANY POINT ON SPAN (NO IMPACT INCLUDED) (SIMPLE SPANS ONLY) .. 6-166

APPENDIX I6B—FORMULAS FOR MOMENT SHEAR AT ANY PANEL POINT (NO IMPACT INCLUDED) (SIMPLE SPAN ONLY) .. 6-167

APPENDIX J6B—FORMULAS FOR MAXIMUM MOMENT AT ANY POINT ON SPAN (NO IMPACT INCLUDED) (SIMPLE SPANS ONLY) .. 6-168

APPENDIX K6B—FORMULAS FOR STEEL COLUMNS A .. 6-169

APPENDIX L6B—FORMULAS FOR THE CAPACITY, C, OF TYPICAL BRIDGE COMPONENTS BASED ON THE LOAD FACTOR METHOD .. 6-171

L6B.1—GENERAL ... 6-171
L6B.2—CAPACITY OF STEEL MEMBERS (PART D, STRENGTH DESIGN METHOD) 6-171
L6B.2.1—Sections in Bending .. 6-171
L6B.2.1.1—Compact, Braced, Noncomposite .. 6-171
Single angles and tees are commonly used as cross-frame members and are often subjected to axial forces and bending. They are almost always connected eccentrically at their ends with respect to the centroid of the cross-section. LRFD Design Article C6.12.2.2.4 refers the Engineer to AISC (2005) for additional guidance on determining the load-carrying capacity of these types of members.

6A.6.10—Evaluation for Shear

Shear resistance at the strength limit state is specified in the *AASHTO LRFD Bridge Design Specifications* for I-sections, box girders, and miscellaneous composite members. The nominal shear resistance of a stiffened web end panel may alternatively be determined as specified in Article 6A.6.10.1.

6A.6.10.1—End Panels

The nominal shear resistance of a stiffened web end panel may be determined as:

\[
V_n = V_p \left[C + \alpha \frac{0.87(1-C)}{\sqrt{1+(d_o/D)^2}} \right] \tag{6A.6.10.1-1}
\]

in which:

\[
\alpha = \text{parameter to consider partial tension-field action}
\]

\[
\alpha = \frac{2.8}{D} \left[\sqrt{M_{tf} + M_{pm}} + \sqrt{M_{pb} + M_{pm}} \right] \tag{6A.6.10.1-2}
\]

\[
V_p = \text{plastic shear force (kip)}
\]

\[
V_p = 0.58 F_{yw} D t_w \tag{6A.6.10.1-3}
\]

where:

\[
C = \text{ratio of the shear-buckling resistance to the shear yield strength determined as specified in LRFD Design Article 6.10.9.3.2}
\]

\[
d_o = \text{transverse stiffener spacing (in.)}
\]

\[
D = \text{web depth (in.)}
\]

\[
F_{yw} = \text{specified minimum yield strength of the web (ksi)}
\]

\[
M_{pb} = \text{plastic moment resistance of the bearing stiffeners (kip-in.)}
\]

\[
M_{pf} = \text{plastic moment resistance of the top flange (kip-in.)}
\]

\[
M_{pm} = \text{minimum value of } M_{pb} \text{ and } M_{pf} (\text{kip-in.})
\]

\[
t_w = \text{web thickness (in.)}
\]

In the calculation of the plastic moment resistances,
M_{pb} and M_{pf}, a portion of the web area defined by an effective web depth, d_e, shall be considered. d_e shall be determined as follows:

If $C \leq 0.8$, then:

$$d_e = \frac{35t_w (0.8 - C)^2}{35}$$

(6A.6.10.1-4)

Otherwise:

$$d_e = 0$$

(6A.6.10.1-5)

The effective web depths, d_e, to be considered in the calculation of the plastic moment resistances, M_{pb} and M_{pf}, are shown in Figure 6A.6.10.1-1.

Figure 6A.6.10.1-1—Effective Web Depth, d_e, for the Top Flange and Bearing Stiffeners (Kim and Uang, 2018)

The effective sections to be considered in the plastic moment resistance calculations for the top flange and bearing stiffeners are shown in Figure 6A.6.10.1-2.

The web end distance, e, used in the calculation of M_{pb} shall not exceed $0.84t_w \sqrt{E/F_{yw}}$.

Figure 6A.6.10.1-2—Effective Sections for the Top Flange and Bearing Stiffeners
The web end distance, \(e \), used in the calculation of \(M_{ab} \) shall not exceed \(0.84 t_w \sqrt{E/F_{yw}} \).

6A.6.11—Box Sections in Flexure

The flexural resistance of straight or horizontally curved multiple or single box sections composite with a concrete deck at the strength limit state shall be determined as specified in LRFD Design Article 6.11.6.2. The provisions of LRFD Design Article 6.11.1.1 shall also apply.

The provisions of LRFD Design Articles 6.11.2.1 and 6.11.2.2 pertaining to cross-section proportion limits need not be considered during evaluation.

The constructibility requirements specified in LRFD Design Article 6.11.3 need not be considered during evaluation.

The fatigue requirements for webs specified in LRFD Design Article 6.10.5.3 need not be considered during evaluation.

6A.6.11.1—Diaphragms and Cross-Frames

Diaphragm and cross-frame members in horizontally curved bridges shall be considered to be primary members and should be load rated accordingly at the discretion of the Owner.

6A.6.12—Evaluation of Critical Connections

6A.6.12.1—General

External connections of nonredundant members shall be evaluated during a load rating analysis in situations where the evaluator has reason to believe that their capacity may govern the load rating of the entire bridge. Evaluation of critical connections shall be performed in accordance with the provisions of these articles.

C6A.6.11.1

See Article C6A.6.9.7.

C6A.6.12.1

External connections are connections that transfer calculated load effects at support points of a member. Nonredundant members are members without alternate load paths whose failure is expected to cause the collapse of the bridge.

It is common practice to assume that connections and splices are of equal or greater capacity than the members they adjoin. With the introduction of more accurate evaluation procedures to identify and use increased member load capacities, it becomes increasingly important to also closely scrutinize the capacity of connections and splices to ensure that they do not govern the load rating.
6A.6.12.2—Bearing-Type Connections
Bearing-type connections shall be evaluated for the strength limit state (at the operating level when checking for HL-93), for flexural moment, shear, or axial force due to the factored loadings at the point of connection. See Table 6A.4.2.2-1 for load factors.

6A.6.12.3—Slip-Critical Connections
High-strength bolted joints designed as slip-critical connections shall be evaluated as slip-critical connections. Slip-critical connections shall be checked (at the operating level when checking for HL-93) for slip under the Service II load combination and for bearing, shear, and tensile resistance at the strength limit state. Provisions of LRFD Design Article 6.13.2.2 shall apply. The friction value shall be based on a value of $K_s = 0.33$ where the condition of the faying surface is unknown. See Table 6A.4.2.2-1 for load factors.

6A.6.12.4—Pinned Connections
Pins shall be evaluated for combined flexure and shear as specified in LRFD Design Article 6.7.6.2.1 and for bearing as specified in LRFD Design Article 6.7.6.2.2. Pinned connections are used both in trusses and at expansion joints of truss and girder suspended spans. Pins are short cylindrical beams and shall be evaluated for: 1) bending, 2) shear, and 3) bearing. Pin analyses should be performed during the load-rating analyses of pin-connected bridges because the pins may not necessarily be of equal or greater capacity than the members they adjoin. The alignment of adjoining members relative to the pin could have a significant effect on the load capacity of the pin as the movement of a member changes the point of application of the member force on the pin. This is especially important on bridges without spacer collars between individual components at a pin. The relative positions of all members that connect to a pin should be ascertained in the field. The pin size should be measured in the field to ascertain any reduction due to corrosion and wear.

6A.6.12.5—Riveted Connections
Riveted connections shall be evaluated as bearing-type connections. Refer to the AASHTO LRFD Design Specifications Article 6.13.6.1.4—Fillers and commentary for more information regarding filler plates. If rivets are of unknown origin or if more rigorous testing is necessary to determine the Ultimate Tensile Strength of the rivets, the use of chemical testing of the rivet may be considered to determine the carbon equivalent and corresponding ASTM specification or grade.

6A.6.12.5.1—Rivets in Shear
The factored resistance of rivets in shear shall be taken as:

$$R_v = \phi_s F_{rv} = \phi_s F_u R_1 R_2 R_3 m A_v$$ \hspace{1cm} (6A.6.12.5.1-1)
traffic. A speed posting should not be considered as a basis for increasing the weight limit in areas where enforcement will be difficult and frequent violations can be anticipated.

6A.9—SPECIAL TOPICS

6A.9.1—Evaluation of Unreinforced Masonry Arches

6A.9.1.1—General

The predominant type of unreinforced masonry bridge is the filled spandrel arch. Materials may be unreinforced concrete, brick, and ashlar or rubble stone masonry. Mortar used to bind the individual masonry units should be classified in accordance with ASTM C270.

The total load-carrying capacity of an unreinforced masonry arch should be evaluated by the Allowable Stress method (Article 6B.5.2.6) based on limitation of the tensile and compressive stresses developed in the extreme fiber when axial and bending stresses are combined, and on failure modes due to instability.

6A.9.1.2—Method of Analysis

Internal stresses of masonry arches are usually analyzed by regarding the arch as an elastic redundant structure. When evaluating masonry arches, three types of failures are generally investigated: 1) overturning of two adjacent masonry units of the arch, 2) sliding or shear failure, and 3) compressive failure of the masonry.

There may be instances in which the capacity of the arch based on approximate analysis methods may be inadequate or the behavior of the arch under traffic is not consistent with that predicted by evaluation. In these situations load tests or more refined analysis may be helpful in establishing a more accurate safe load capacity.

6A.9.1.3—Allowable Stresses in Masonry

The allowable stresses in masonry materials shall be as specified in Article 6B.5.2.6 of this Manual.
6A.9.2—Historic Bridges

Most states have undertaken historic bridge surveys to identify which of their bridges that were built more than 50 years ago are historic. Historic bridge survey information is generally maintained by the state Department of Transportation, and it may be in a master database and/or may have been entered into the state’s BMS database. This information is frequently part of the bridge record, and it offers guidance on why the bridge is noteworthy. The survey data may also contain useful information about original design details.

Historic bridges are defined as those that meet the National Register of Historic Places’ criteria for evaluation. The criteria establish a measure of consideration to evaluate which bridges have the significance and integrity to be determined historic and thus worthy of preservation. Many types of bridges, from stone arch and metal truss bridges to early continuous stringer and prestressed beam bridges have been determined to be historic for their technological significance. Other bridges are historic because they are located in historic districts or are associated with historic transportation routes, such as rail lines or parkways.

Historic bridges, like all other National Register-listed or eligible resources, are affected by federal laws intended to strengthen the governmental commitment to preservation. This means that all work needs to be done in compliance with the applicable federal, and often state, regulations and procedures. They require consideration of the historic significance of the bridge when developing maintenance, repair, and/or rehabilitation methodologies. The goal is to avoid having an adverse effect on the historic bridge. Guidance on how to develop successful approaches for working on historic bridges can be found in The Secretary of the Interior’s Standards for Rehabilitation and The Secretary of the Interior’s Standards for the Treatment of Historic Properties 1992. Both offer approaches for considering ways to upgrade structures while maintaining their historic fabric and significance, and they are available from the National Park Service Preservation Assistance Division or the state historic preservation office.

Because historic bridges require demonstrated consideration of ways to avoid adverse effects, evaluations should be complete, encompassing the relevant parts of this Manual. Nondestructive testing methods should be considered to verify components and system performance. Repair rather than replacement of original elements should be considered, and any replacement should be in kind where feasible. Strengthening should be done in a manner that is respectful to the historic bridge.

6A.10—REFERENCES

Uang, C. M. and D. W. Kim. Evaluation of Shear Strength of Stiffened Flexural Members. Report to AISC TC 4 Committee on Member Design. Chicago, IL, November 2018.
6B.4.2—Allowable Stress

For the allowable stress method, $A_1 = 1.0$ and $A_2 = 1.0$ in the general rating equation.

The capacity, C, depends on the rating level desired, with the higher value for C used for the Operating level. The determination of the nominal capacity of a member is discussed in Article 6B.5.2.

6B.4.3—Load Factor

For the load factor method, $A_1 = 1.3$ and A_2 varies depending on the rating level desired. For inventory level, $A_2 = 2.17$ and for operating level, $A_2 = 1.3$.

The nominal capacity, C, is the same regardless of the rating level desired (see Article 6B.5.3).

6B.5—NOMINAL CAPACITY: C

6B.5.1—General

The nominal capacity to be used in the rating equation depends on the structural materials, the rating method, and rating level used. Nominal capacities based on the Allowable Stress method are discussed in Article 6B.5.2 and those based on the Load Factor method are discussed in Article 6B.5.3.

The Bridge Owner is responsible for selecting the rating method. The method used should be identified for future reference.

6B.5.2—Allowable Stress Method

In the allowable stress method, the capacity of a member is based on the rating level evaluated: inventory level-allowable stress, or operating level-allowable stress. The properties to be used for determining the allowable stress capacity for different materials follow. For convenience, the tables provide, where appropriate, the inventory, operating, and yield stress values. Allowable stress and strength formulas should be those provided herein or those contained in the AASHTO Standard Specifications. When situations arise that are not covered by these specifications, then rational strength of material formulae should be used consistent with data and plans verified in the field investigation. Deviations from the AASHTO Standard Specifications should be fully documented.

When the bridge materials or construction are unknown, the allowable stresses should be fixed by the Engineer, based on field investigations and/or material testing conducted in accordance with Section 5, and should be substituted for the basic stresses given herein.
6B.5.2.1—Structural Steel

The allowable unit stresses used for determining safe load capacity depend on the type of steel used in the structural members. When nonspecification metals are encountered, coupon testing may be used to determine a nominal yield point. When information on specifications of the steel is not available, allowable stresses should be taken from the applicable “Date Built” column of Tables 6B.5.2.1-1 and 6B.5.2.1-2.

Table 6B.5.2.1-1 gives allowable inventory stresses and Table 6B.5.2.1-2 gives the allowable operating stresses for structural steel. The nominal yield stress, F_y, is also shown in Tables 6B.5.2.1-1 and 6B.5.2.1-2. Tables 6B.5.2.1-3 and 6B.5.2.1-4 give the allowable inventory and operating stresses for bolts and rivets. For compression members, the effective length, K_L, may be determined in accordance with the AASHTO Standard Specifications or taken as follows:

$$ KL = 75 \text{ percent of the total length of a column having riveted end connections} $$

$$ = 87.5 \text{ percent of the total length of a column having pinned end connections} $$

The modulus of elasticity, E, for steel should be 29,000,000 lb/in.2

If the investigation of shear and stiffener spacing is desirable, such investigation may be based on the AASHTO Standard Specifications. The allowable shear stress, F_{sv}, of a stiffened web end panel may alternatively be determined from Eq. 6A.6.10.1-1, with F_{c} replaced by $F_{y}/3$, and with C determined as specified in Article 10.34.4.2 of the AASHTO Standard Specifications.

C6B.5.2.1

When nonspecification materials are encountered, standard coupon testing procedures may be used to establish the nominal yield point. To provide a 95 percent confidence limit, the nominal yield point would typically be the mean coupon test value minus 1.65 standard deviations.

Mechanical properties of eyebars, high-strength eyebars, and cables vary depending on manufacturer and year of construction. In the absence of material tests, the Engineer should carefully investigate the material properties using manufacturer’s data and compilations of older steel properties before establishing the yield and allowable stresses to be used in load rating the bridge.

The formulas for the allowable bending stress in partially supported or unsupported compression flanges of beams and girders, given in Tables 6B.5.2.1-1 and 6B.5.2.1-2 are based on the corresponding formula given in Table 10.32.1A of the Allowable Stress Design portion of the AASHTO Standard Specifications. The equation in Table 6B.5.2.1-1 is to be used for an inventory rating and the equation in Table 6B.5.2.1-2 is to be used for an operating rating.

The previously used formulas are inelastic parabolic formulas which treat the lateral torsional buckling of a beam as flexural buckling of the compression flange. This is a very conservative approach for beams with short unbraced lengths. The flexural capacity is reduced for any unbraced length greater than zero. This does not reflect the true behavior of a beam. A beam may reach M_p, with unbraced lengths much greater than zero. In addition, the formula neglects the St. Venant torsional stiffness of the cross-sections. This is a significant contribution to the lateral torsional buckling resistance of rolled shapes, particularly older “I” shapes. The previous formulas must also be limited to the values of I/b listed. This limit is the slenderness ratio when the estimated buckling stress is equal to half the yield strength or 0.275 F_y in terms of an allowable stress. Many floor stringers will have unbraced lengths beyond this limit. If the formulas are used beyond these limits, negative values of the allowable stress can result.

The new formulas have no upper limit which allows the determination of allowable stresses for all unbraced lengths. In addition, the influence of the moment gradient upon buckling capacity is considered using the modifier, C_b, in the new formulas.

The specification formulas are based on the exact formulations of the lateral torsional buckling of beams. They are currently used in the AISC LRFD Specifications and other specifications throughout the world. They are also being used to design and rate steel bridges by the load factor method. Figures 6B.5.2.1-1 and 6B.5.2.1-2 show a comparison between the specification formulas and the previous specification formulas for two sections. Figure 6B.5.2.1-1 compares results for a $W_{18} \times 46$ rolled section. The new specification gives a much higher capacity than the previous specification. The difference is due to the inclusion of the St. Venant torsional stiffness, J, in the proposed specification. Figure 6B.5.2.1-2 shows a similar comparison for a plate-girder section. The section,
6B.5.2.7—Timber

Determining allowable stresses for timber in existing bridges will require sound judgment on the part of the Engineer making the field investigation.

(1) Inventory Stress

The inventory unit stresses should be equal to the allowable stresses for stress-grade lumber given in the AASHTO Standard Specifications.

Allowable inventory unit stresses for timber columns should be in accordance with the applicable provisions of the AASHTO Standard Specifications.

(2) Operating Stress

The maximum allowable Operating unit stresses should not exceed 1.33 times the allowable stresses for stress-grade lumber given in the current AASHTO Standard Specifications. Reduction from the maximum allowable stress will depend upon the grade and condition of the timber and should be determined at the time of the inspection.

Allowable operating stress in lb/in.\(^2\) of cross-sectional area of simple solid columns should be determined by the following formulas but the allowable operating stress should not exceed 1.33 times the values for compression parallel to grain given in the design stress table of the AASHTO Standard Specifications.

\[
\frac{P}{A} = \frac{4.8E}{(1/r)^2} \quad (6B.5.2.7-1)
\]

where:
- \(P\) = Total load, lb
- \(A\) = Cross-sectional area, in.\(^2\)
- \(E\) = Modulus of elasticity
- \(\ell\) = Unsupported overall length between points of lateral support of simple columns, in.
- \(r\) = Least radius of gyration of the section, in.

For columns of square or rectangular cross-section, this formula becomes:

\[
\frac{P}{A} = \frac{0.40E}{(1/d)^2} \quad (6B.5.2.7-2)
\]

where:
- \(d\) = Dimension of the narrowest face, in.

The above formula applies to long columns with \(\ell/d\) over 11, but not greater than 50.

For short columns, \(\ell/d\) not over 11, use the allowable design unit stress in compression parallel to grain times 1.33 for the grade of timber used.

C6B.5.2.7

The material and member properties based on as-built information may need to be adjusted for field conditions such as weathering or decay. The Engineer’s judgment and experience are required in assessing actual member resistance.

Eq. 6B.5.2.7-1 is based on the Euler long-column formula with two adjustments as follows. First, \(E\) is reduced by dividing by 2.74. This corresponds to a safety factor of 1.66 for solid timber members according to the National Design Specifications for Wood Construction (2005). Then the Euler allowable stress is multiplied by 1.33 to provide an operating level allowable stress as shown in Eq. 6B.5.2.7-1.

For square and rectangular columns, substituting \(d/\sqrt{12}\) for the radius of gyration, \(r\), in Eq. 6B.5.2.7-1 results in Eq. 6B.5.2.7-2.
6B.5.3—Load Factor Method

Nominal capacity of structural steel, reinforced concrete and prestressed concrete should be the same as specified in the load factor sections of the AASHTO Standard Specifications. Nominal strength calculations should take into consideration the observable effects of deterioration, such as loss of concrete or steel-sectional area, loss of composite action or corrosion. Allowable fatigue strength should be checked based on the AASHTO Standard Specifications. Special structural or operational conditions and policies of the Bridge Owner may also influence the determination of fatigue strength.

6B.5.3.1—Structural Steel

The yield stresses used for determining ratings should depend on the type of steel used in the structural members. When nonspecification metals are encountered, coupon testing may be used to determine yield characteristics. The nominal yield value should be substituted in strength formulas and is typically taken as the mean test value minus 1.65 standard deviations. When specifications of the steel are not available, yield strengths should be taken from the applicable “date built” column of Tables 6B.5.2.1-1 to 6B.5.2.1-4.

The capacity of structural steel members should be based on the load factor requirements stated in the AASHTO Standard Specifications. The capacity, C, for typical steel bridge members is summarized in Appendix L6B. For beams, the overload limitations of Article 10.57 of the AASHTO Standard Specifications should also be considered.

If the investigation of shear and stiffener spacing for a straight web is desirable, such investigation may be based on the AASHTO Standard Specifications. The shear capacity, \(V_s \), of a stiffened web end panel may alternatively be taken as \(V_s \) determined from Eq. 6A.6.10.1-1, with C determined as specified in Article 10.48.8.1 of the AASHTO Standard Specifications.

If the investigation of shear and stiffener spacing for a curved web is desirable, such investigation may be based on the AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges, 2003. The shear capacity, \(V_s \), of a stiffened web interior panel may alternatively be taken as \(V_s \) determined from Eq. 6A.6.10.1-1, with C determined as specified in Article 10.48.8.1 of the AASHTO Standard Specifications.

Curved steel beams with a web slenderness ratio exceeding the limits in Article 6.3 of the AASHTO 2003 Guide Specifications for Horizontally Curved Girder Highway Bridges, but with actual transverse stiffener spacing within the limits given in Article 6.3 may be considered sufficiently stiffened.

C6B.5.3

Nominal capacities for members in the propose guidelines are based on AASHTO’s Standard Specifications contained in the load factor section. This resistance depends on both the current dimensions of the section and the nominal material strength.

Different methods for considering the observable effects of deterioration were studied. The most reliable method available still appears to be a reduction in the nominal resistance based on measured or estimated losses in cross-sectional area and/or material strengths.

At the present time, load factor methods for determining the capacity of timber and masonry structural elements are not available.

C6B.5.3.1

Guidance on considering the effects of deterioration on load rating of steel structures can be found in Article C6A.6.5.

Specifications and guidance for determining the capacity of gusset plates can be found in Appendix L6B.

In Article 6.3 (Transversely Stiffened Webs), of the 2003 AASHTO Guide Specifications for Horizontally Curved Girder Highway Bridges, the first sentence states “Web slenderness, \(D/\ell_0 \), shall not exceed 150.” This statement may be interpreted to mean that webs with \(D/\ell_0 > 150 \) are considered unstiffened and the shear capacity is computed as per 6.2 (Unstiffened Webs). This statement refers to handling requirements for new design and should not be considered when determining if the web is stiffener in a rating. Furthermore, this article defines “d" as the “required stiffener spacing” for use in Eq. 6-9. In cases of new designs, the required stiffener spacing is used to determine the smallest possible value of the buckling coefficient, \(k \). This is conservative when actual stiffener spacings are less than the required spacing. In a rating, the actual stiffener spacing should be used to determine \(k \) in order to calculate the actual shear capacity of each panel. If the \(D/\ell_0 > 150 \), longitudinal web stiffeners are required according to the specification (see Article 6.4). However, the shear capacity is equal to the shear buckling capacity = \(CV_p \) with no dependency on web slenderness.

ASTM F3125 has replaced ASTM A325 and A490 specifications for high strength bolts. The designations A325 and A490 will be retained in Table 6B.5.3.1-1 as this designation shows on many plans and specifications and was used in existing bridges. It should be noted in footnote c the tensile strength of M164(A325) bolts decreases for diameters greater than 1.0 in., while the tensile strength of ASTM F3125 Grade A325 and A490 do not decrease for diameters greater than 1.0 in.
Except as specified in Appendix L6B.2.6.1, the Operating rating for welds, bolts, and rivets should be determined using the maximum strengths from Table 6B.5.3.1-1.

The Operating rating for friction joint fasteners (ASTM A325 bolts) should be determined using a stress of 21 ksi. \(A_1 \) and \(A_2 \) should be taken as 1.0 in the basic rating equation.

Where rivets carrying loads pass through undeveloped fillers 0.25 in. or more in thickness in axially loaded connections, refer to Article 6A.6.12.5.1 and AASHTO LRFD Design Article 6.13.6.1.4 for a potential capacity reduction factor.
APPENDIX A: ILLUSTRATIVE EXAMPLES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Example</th>
<th>Bridge Summary</th>
<th>Span</th>
<th>Type</th>
<th>Rated Members</th>
<th>Rating Live Loads</th>
<th>Limit States for Evaluation</th>
<th>Rating Methods</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Simple Span 65 ft</td>
<td>Composite Steel Stringer Bridge (Interior and Exterior Stringers)</td>
<td>Interior and Exterior Stringer</td>
<td>Design</td>
<td>Strength I Service II Fatigue</td>
<td>LRFR ASR and LFR</td>
<td>A-1</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Simple Span 26 ft</td>
<td>Reinforced Concrete T-Beam Bridge</td>
<td>Interior Beam</td>
<td>Design</td>
<td>Strength I</td>
<td>LRFR ASR and LFR</td>
<td>A-53</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Simple Span 80 ft</td>
<td>Prestressed Concrete I-Girder Bridge</td>
<td>Interior Girder</td>
<td>Design</td>
<td>Strength I Service III</td>
<td>LRFR</td>
<td>A-87</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>Simple Span 17 ft 10 in.</td>
<td>Timber Stringer Bridge</td>
<td>Interior Stringer</td>
<td>Design</td>
<td>Strength I</td>
<td>LRFR ASR and LFR</td>
<td>A-121</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Four-Span Continuous 112 ft 140 ft 140 ft 112 ft</td>
<td>Welded Steel Plate Girder Bridge</td>
<td>Interior Girder</td>
<td>Design</td>
<td>Strength I Service II</td>
<td>LRFR</td>
<td>A-137</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Single Span 175 ft</td>
<td>Steel Through Pratt Truss Bridge</td>
<td>Top Chord, Bottom Chord, Diagonal, Vertical</td>
<td>Design</td>
<td>Strength I</td>
<td>LRFR</td>
<td>A-165</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Simple Span 21 ft 6 in.</td>
<td>Reinforced Concrete Slab Bridge</td>
<td>Interior and Exterior Strips</td>
<td>Design</td>
<td>Strength I Service II</td>
<td>LRFR</td>
<td>A-181</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>Simple Span 94 ft 8 1/4 in.</td>
<td>Two-Girder Steel Bridge</td>
<td>Intermediate Floorbeam and Main Girder</td>
<td>Design</td>
<td>Strength I Service II</td>
<td>LRFR</td>
<td>A-189</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>Simple Span 70 ft</td>
<td>Prestressed Concrete Adjacent Box-Beam Bridge</td>
<td>Interior Beam</td>
<td>Design</td>
<td>Strength I Service III</td>
<td>LRFR</td>
<td>A-213</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>Rigid Frame 31.5 ft</td>
<td>Reinforced Concrete Box Culvert</td>
<td>Roof Slab, Walls, and Floor</td>
<td>Design</td>
<td>Strength I</td>
<td>LRFR</td>
<td>A-229</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>Single span 420.0 ft</td>
<td>Through Truss</td>
<td>Gusset Plates</td>
<td>Design</td>
<td>Strength I</td>
<td>LRFR ASR and LFR</td>
<td>A-255</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
A1—SIMPLE SPAN COMPOSITE STEEL STRINGER BRIDGE ... A-1

PART A—LOAD AND RESISTANCE FACTOR RATING METHOD .. A-1
A1A.1—Evaluation of an Interior Stringer .. A-1

A1A.1.1—Bridge Data .. A-1
A1A.1.2—Section Properties .. A-1

A1A.1.2.1—Noncomposite Section Properties .. A-2
A1A.1.2.2—Composite Section Properties ... A-2
A1A.1.2.3—Summary of Section Properties at Midspan .. A-3

A1A.1.2.3a—Steel Section Only .. A-3
A1A.1.2.3b—Composite Section—Short Term, n = 9.2 .. A-4
A1A.1.2.3c—Composite Section—Long Term, 3n = 27.6 .. A-4

A1A.1.3—Dead-Load Analysis—Interior Stringer .. A-4
A1A.1.3.1—Components and Attachments, DC .. A-4

A1A.1.3.1a—Noncomposite Dead Loads, DC1 ... A-4
A1A.1.3.1b—Composite Dead Loads, DC2 ... A-5

A1A.1.3.2—Wearing Surface ... A-5
A1A.1.4—Live Load Analysis—Interior Stringer (LRFD Design Table 4.6.2.2.1-1) A-5

A1A.1.4.1—Compute Live Load Distribution Factors (Type (a) cross section) (LRFD Design Table 4.6.2.2.1-1) ... A-5

A1A.1.4.1a—Distribution Factor for Moment, g_m (LRFD Design Table 4.6.2.2.2b-1) A-6
A1A.1.4.1b—Distribution Factor for Shear, g_s (LRFD Design 4.6.2.2.3a) A-7
A1A.1.4.2—Compute Maximum Live Load Effects ... A-7
A1A.1.4.2a—Maximum Design Live Load (HL-93) Moment at Midspan A-7
A1A.1.4.2b—Maximum Design Live Load Shear at Beam Ends ... A-7
A1A.1.4.2c—Distributed Live Load Moments and Shears ... A-8

A1A.1.5—Compute Nominal Resistance of Section at Midspan (LRFD Design Appendix D6.1) . . A-8

A1A.1.5.1—Classify Section (LRFD Design 6.10.7 and Figure C6.4.5-1) A-10

A1A.1.5.1a—Check Web Slenderness (LRFD Design 6.10.6.2.2) .. A-10
A1A.1.5.1b—Check Ductility Requirement (LRFD Design 6.10.7.1.2) A-10
A1A.1.5.2—Plastic Moment, M_p .. A-10
A1A.1.5.3—Nominal Shear Resistance, V_n (LRFD Design 6.10.9.2) A-11
A1A.1.5.4—Demand Summary for Interior Stringer .. A-12

A1A.1.6—General Load-Rating Equation ... A-12

A1A.1.7—Evaluation Factors (for Strength Limit States) ... A-12

A1A.1.8—Design Load Rating (6A.4.3) .. A-12

A1A.1.8.1—Strength I Limit State (6A.6.4.1) ... A-12
A1A.1.8.1a—Inventory Level ... A-12
A1A.1.8.1b—Operating Level ... A-13
A1A.1.8.2—Service II Limit State (6A.6.4.1) ... A-13
A1A.1.8.2a—Inventory Level ... A-13
A1A.1.8.2b—Operating Level ... A-14
A1A.1.8.3—Fatigue Limit State (6A.6.4.1) .. A-14
A1A.1.8.3a—Load Distribution for Fatigue .. A-15
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1A.2.1</td>
<td>Section Properties</td>
</tr>
<tr>
<td>A1A.2.1.1</td>
<td>Noncomposite Section Properties</td>
</tr>
<tr>
<td>A1A.2.1.2</td>
<td>Composite Section Properties</td>
</tr>
<tr>
<td>A1A.2.1.3</td>
<td>Summary of Section Properties at Midspan</td>
</tr>
<tr>
<td>A1A.2.2.1</td>
<td>Components and Attachments, DC</td>
</tr>
<tr>
<td>A1A.2.2.1a</td>
<td>Noncomposite Dead Loads, DC1</td>
</tr>
<tr>
<td>A1A.2.2.1b</td>
<td>Composite Dead Loads, DC2</td>
</tr>
<tr>
<td>A1A.2.2.2</td>
<td>Wearing Surface</td>
</tr>
<tr>
<td>A1A.2.2.3</td>
<td>Summary of Distribution Factors for the Exterior Girders</td>
</tr>
<tr>
<td>A1A.2.3</td>
<td>Live Load Analysis—Exterior Stringer</td>
</tr>
<tr>
<td>A1A.2.3.1</td>
<td>Compute Live Load Distribution Factors (Type (a) cross section)</td>
</tr>
<tr>
<td>A1A.2.3.1a</td>
<td>Distribution Factor for Moment, gM (LRFD Design Table 4.6.2.2.2d-1)</td>
</tr>
<tr>
<td>A1A.2.3.1b</td>
<td>Distribution Factor for Shear, gV (LRFD Design Table 4.6.2.2.3b-1)</td>
</tr>
<tr>
<td>A1A.2.3.1c</td>
<td>Special Analysis for Exterior Girders with Diaphragms or Cross-Frames (LRFD Design 4.6.2.2.2d)</td>
</tr>
<tr>
<td>A1A.2.3.1d</td>
<td>Summary of Distribution Factors for the Exterior Girders</td>
</tr>
<tr>
<td>A1A.2.3.2</td>
<td>Compute Maximum Live Load Effects for HL-93</td>
</tr>
<tr>
<td>A1A.2.4</td>
<td>Compute Nominal Resistance of Section at Midspan</td>
</tr>
<tr>
<td>A1A.2.4.1</td>
<td>Classify Section (LRFD Design 6.10.7 and Appendix C6 Figure C6.4.5-1)</td>
</tr>
<tr>
<td>A1A.2.4.1a</td>
<td>Check Web Slenderness</td>
</tr>
<tr>
<td>A1A.2.4.1b</td>
<td>Check Ductility Requirement (LRFD Design 6.10.7.1.2)</td>
</tr>
<tr>
<td>A1A.2.4.2</td>
<td>Plastic Moment, MP</td>
</tr>
<tr>
<td>A1A.2.4.3</td>
<td>Nominal Shear Resistance, VS (LRFD Design 6.10.9.2)</td>
</tr>
<tr>
<td>A1A.2.4.4</td>
<td>Demand Summary for Exterior Stringer</td>
</tr>
<tr>
<td>A1A.2.5</td>
<td>General Load-Rating Equation</td>
</tr>
<tr>
<td>A1A.2.6</td>
<td>Evaluation Factors (for Strength Limit States)</td>
</tr>
<tr>
<td>A1A.2.7</td>
<td>Design Load Rating (6A.4.3)</td>
</tr>
</tbody>
</table>
A1B.1.1—Bridge Data .. A-39
A1B.1.2—Section Properties ... A-39
 A1B.1.2.1—Noncomposite Section Properties .. A-39
 A1B.1.2.2—Composite Section Properties ... A-40
A1B.1.3—Dead Load Analysis—Interior Stringer .. A-42
 A1B.1.3.1—Dead Loads (Includes an Allowance of Six Percent of Steel Weight for Connections) A-42
 A1B.1.3.2—Superimposed Dead Loads (AASHTO 3.23.2.3.1.1) ... A-43
A1B.1.4—Live Load Analysis—Interior Stringer .. A-43
A1B.1.5—Allowable Stress Rating (6B.3.1, 6B.4.2, and 6B.5.2) .. A-44
 A1B.1.5.1—Impact (Use Standard AASHTO) (6B.6.4, AASHTO 3.8.2.1) .. A-44
 A1B.1.5.2—Distribution (Use Standard AASHTO) (6B.6.3, AASHTO 3.23.2.2, and Table 3.23.1) ... A-44
 A1B.1.5.3—Inventory Level (Bottom Tension Controls) (6B.5.2.1, Table 6B.5.2.1-1) A-44
 A1B.1.5.4—Operating Level (6B.5.2.1, Table 6B.5.2.1-2) ... A-45
 A1B.1.5.5—Summary of Ratings for Allowable Stress Rating Method ... A-46
A1B.1.6—Load Factor Rating (6B.3.2, 6B.4.3, and 6B.5.3) .. A-46
 A1B.1.6.1—Impact (Use Standard AASHTO) (6B.6.4) .. A-46
 A1B.1.6.2—Distribution (Use Standard AASHTO) (6B.6.3) .. A-46
 A1B.1.6.3—Capacity of Section, Mg (6B.5.3.1) .. A-46
 A1B.1.6.4—Inventory Level (6B.4.1 and 6B.5.3) .. A-48
 A1B.1.6.5—Operating Level (6B.4.3) .. A-48
 A1B.1.6.6—Check Serviceability Criteria ... A-49
 A1B.1.6.6a—At Inventory Level (Bottom Steel in Tension Controls) .. A-49

PART B—ALLOWABLE STRESS AND LOAD FACTOR RATING METHODS .. A-39
A1B.1—EVALUATION OF AN INTERIOR STRINGER ... A-39
 A1B.1.1—Bridge Data .. A-39
 A1B.1.2—Section Properties ... A-39
 A1B.1.2.1—Noncomposite Section Properties .. A-39
 A1B.1.2.2—Composite Section Properties ... A-40
 A1B.1.3—Dead Load Analysis—Interior Stringer .. A-42
 A1B.1.3.1—Dead Loads (Includes an Allowance of Six Percent of Steel Weight for Connections) A-42
 A1B.1.3.2—Superimposed Dead Loads (AASHTO 3.23.2.3.1.1) ... A-43
 A1B.1.4—Live Load Analysis—Interior Stringer .. A-43
 A1B.1.5—Allowable Stress Rating (6B.3.1, 6B.4.2, and 6B.5.2) .. A-44
 A1B.1.5.1—Impact (Use Standard AASHTO) (6B.6.4, AASHTO 3.8.2.1) .. A-44
 A1B.1.5.2—Distribution (Use Standard AASHTO) (6B.6.3, AASHTO 3.23.2.2, and Table 3.23.1) ... A-44
 A1B.1.5.3—Inventory Level (Bottom Tension Controls) (6B.5.2.1, Table 6B.5.2.1-1) A-44
 A1B.1.5.4—Operating Level (6B.5.2.1, Table 6B.5.2.1-2) ... A-45
 A1B.1.5.5—Summary of Ratings for Allowable Stress Rating Method ... A-46
 A1B.1.6—Load Factor Rating (6B.3.2, 6B.4.3, and 6B.5.3) .. A-46
 A1B.1.6.1—Impact (Use Standard AASHTO) (6B.6.4) .. A-46
 A1B.1.6.2—Distribution (Use Standard AASHTO) (6B.6.3) .. A-46
 A1B.1.6.3—Capacity of Section, Mg (6B.5.3.1) .. A-46
 A1B.1.6.4—Inventory Level (6B.4.1 and 6B.5.3) .. A-48
 A1B.1.6.5—Operating Level (6B.4.3) .. A-48
 A1B.1.6.6—Check Serviceability Criteria ... A-49
 A1B.1.6.6a—At Inventory Level (Bottom Steel in Tension Controls) .. A-49
APPENDIX A: ILLUSTRATIVE EXAMPLES

A1B.1.6b—At Operating Level .. A-50
A1B.1.6.7—Summary of Ratings for Load Factor Rating Method .. A-51
A1B.1.7—Load Factor Rating—Rate for Single-Unit Formula B Loads .. A-51

PART C—SUMMARY .. A-52.1
A1C.1—Summary of All Ratings for Example A1 .. A-52.1
A1C.2—References ... A-52.2

A2—REINFORCED CONCRETE T-BEAM BRIDGE: EVALUATION OF AN INTERIOR BEAM A-53

PART A—LOAD AND RESISTANCE FACTOR RATING METHOD ... A-53
A2A.1—Bridge Data ... A-53
A2A.2—Dead-Load Analysis—Interior Beam .. A-53
A2A.2.1—Components and Attachments, DC .. A-53
A2A.2.2—Wearing Surface, DW ... A-53
A2A.3—Live-Load Analysis—Interior Beam .. A-55
A2A.3.1—Compute Live-Load Distribution Factor .. A-55
A2A.3.1.1—Distribution Factor for Moment, g_m (LRFD Design Table 4.6.2.2.2b-1) A-55
A2A.3.1.2—Distribution Factor for Shear, g_s (LRFD Design Table 4.6.2.2.3a-1) A-55
A2A.3.2—Compute Maximum Live Load Effects ... A-56
A2A.3.2.1—Maximum Design Live Load (HL-93) Moment at Midspan ... A-56
A2A.3.2.2—Maximum Design Live Load Shear (HL-93) at Critical Section ... A-56
A2A.3.2.3—Distributed Live Load Moments ... A-56
A2A.4—Compute Nominal Flexural Resistance .. A-56
A2A.4.1—Compute Effective Flange Width, b_f (LRFD Design 4.6.2.6.1) ... A-56
A2A.4.2—Compute Distance to Neutral Axis, c ... A-56
A2A.5—Maximum Reinforcement (6A.5.5) ... A-57
A2A.6—Minimum Reinforcement (6A.5.6) ... A-58
A2A.7—Compute Nominal Shear Resistance .. A-59
A2A.8—Summary for Interior Concrete T-Beam .. A-61
A2A.9—General Load Rating Equation ... A-61
A2A.10—Evaluation Factors (for Strength Limit States) ... A-61
A2A.11—Design Load Rating (6A.4.3) .. A-61
A2A.11.1—Strength I Limit State .. A-61
A2A.11.2—Inventory Level (6A.5.4.1) .. A-61
A2A.11.3—Operating Level .. A-62
A2A.12—Legal Load Rating (6A.5.4.2) ... A-62
A2A.12.1—Strength I Limit State (6A.5.4.2.1) ... A-63
A2A.12.2—Summary .. A-64
A2A.13—Permit Load Rating (6A.4.5) .. A-64
A2A.13.1—Strength II Limit State (6A.5.4.2.1) .. A-65
A2A.13.2—Service I Limit State (Optional) (6A.5.4.2.2b) ... A-67
A2A.13.2.1—Simplified Check Using 0.75M_n (C6A.5.4.2.2b) .. A-67
A2A.13.2.2—Refined Check Using 0.9f_y ... A-68
A2A.14—Summary of Rating Factors for Load and Resistance Factor Rating Method A-70
PART B—ALLOWABLE STRESS AND LOAD FACTOR RATING METHODS

A2B.1—Bridge Data .. A-71
A2B.2—Section Properties .. A-71
A2B.3—Dead-Load Analysis—Interior Beam .. A-71
A2B.4—Live-Load Analysis—Interior Beam ... A-71
A2B.5—Allowable Stress Rating (6B.3.1, 6B.4.2, and 6B.5.2) ... A-72
 A2B.5.1—Impact (Use standard AASHTO) (6B.6.4, AASHTO 3.8.2.1) ... A-72
 A2B.5.2—Distribution (Use standard AASHTO) (6B.6.3, AASHTO 3.23.2.2 and Table 3.23.1) A-72
 A2B.5.3—Inventory Level (6B.4.2, 6B.5.2.4) .. A-72
 A2B.5.4—Operating Level (6B.5.2) .. A-75
A2B.6—Load Capacity Based on Allowable Stress .. A-75
A2B.7—Capacity (Alternate Approach) ... A-76
A2B.8—Allowable Stress Rating—Rate for AASHTO Legal Loads .. A-78
A2B.9—Summary of Ratings for Allowable Stress Rating Method ... A-79
A2B.10—Load Factor Rating (6B.3.2, 6B.4.3, 6B.5.3) ... A-79
 A2B.10.1—Impact (Use standard AASHTO) (6B.6.4, AASHTO 3.8.2.1) A-79
 A2B.10.2—Distribution (Use standard AASHTO) (6B.6.3, AASHTO 3.23.2.2 and Table 3.23.1) A-80
 A2B.10.3—Capacity of Section (6B.5.3.2) ... A-80
 A2B.10.4—Inventory Level (6B.4.1, 6B.5.3) .. A-81
 A2B.10.5—Operating Level (6B.4.1, 6B.5.3) .. A-81
 A2B.10.6—Summary of Ratings for Load Factor Rating Method .. A-81
 A2B.10.7—Load Factor Rating—Rate for AASHTO Legal Loads .. A-82
 A2B.10.8—Load Factor Rating—Rate for Single-Unit Formula B Loads .. A-82

PART C—SUMMARY ... A-84
A2C.1—Summary of All Ratings for Example A2 .. A-84
A2C.2—References .. A-85

A3—SIMPLE SPAN PRESTRESSED CONCRETE: I-GIRDER BRIDGE EVALUATION OF AN INTERIOR GIRDER (LRFR ONLY) ... A-87
A3.1—Bridge Data .. A-87
A3.2—Summary of Section Properties ... A-89
A3.3—Dead Load Analysis—Interior Girder .. A-90
 A3.3.1—Components and Attachments, DC ... A-90
 A3.3.1.1—Noncomposite Dead Loads, DC_1 ... A-90
 A3.3.1.2—Composite Dead Load, DC_2 .. A-90
 A3.3.2—Wearing Surface, DW ... A-91
A3.4—Live Load Analysis—Interior Girder ... A-91
 A3.4.1—Compute Live Load Distribution Factors, g ... A-91
 A3.4.1.1—Distribution Factor for Moment, g_{m} (LRFD Design Table 4.6.2.2.2b-1) A-92
 A3.4.1.2—Distribution Factor for Shear, g_{v} (LRFD Design Table 4.6.2.2.3a-1) A-92
 A3.4.2—Compute Maximum Live Load Effects .. A-93
 A3.4.2.1—Maximum Design Live Load (HL-93)—Moment at Midspan A-93
A3.5—Compute Nominal Flexural Resistance at Midspan ... A-93
A3.6—Maximum Reinforcement .. A-94
A3.7—Minimum Reinforcement ... A-95
A3.7.1—Determine Effective Prestress Force, P_{pe} ... A-96
A3.7.1.1—Loss Due to Elastic Shortening and/or External Loads, Δf_{pES} A-96
A3.7.1.2—Approximate Lump Sum Estimate of Time-Dependent Losses, Δf_{pLT} A-97
A3.7.1.3—Total Prestress Losses, Δf_{pT} ... A-98
A3.8—Compute Nominal Shear Resistance at First Critical Section ... A-99
A3.9—Maximum Shear at Critical Section Near Supports ... A-101
A3.10—Compute Nominal Shear Resistance .. A-101
 A3.10.1—Simplified Approach .. A-102
 A3.10.2—MCFT Approach .. A-103
A3.10.3—Check Longitudinal Reinforcement (LRFD Design 5.7.3.5) ... A-107
A3.11—Compute Nominal Shear Resistance at Stirrup Change/Quarter Point (6A.5.8) A-108
A3.12—Maximum Shear at Stirrup Change .. A-109
 A3.12.1—Simplified Approach .. A-110
 A3.12.2—MCFT Approach ... A-111
A3.12.3—Check Longitudinal Reinforcement (LRFD Design 5.7.3.5) .. A-112
A3.12.4—Summary .. A-113
A3.13—General Load Rating Equation (6A.4.2) ... A-113
 A3.13.1 Evaluation Factors (for Strength Limit State) ... A-114
 A3.13.1.1—Resistance Factor, φ (LRFD Design 5.5.4.2.1) .. A-114
 A3.13.1.2—Condition Factor, ϕ, (6A.4.2.3) ... A-114
 A3.13.1.3—System Factor, ψ, (6A.4.2.4) ... A-114
 A3.13.2—Design Load Rating (6A.4.3) ... A-114
 A3.13.2.1—Strength I Limit State (6A.5.4.1) .. A-114
 A3.13.2.1a—Inventory Level .. A-114
 A3.13.2.1b—Operating Level .. A-115
 A3.13.2.2—Service III Limit State (Inventory Level) (6A.5.4.1) .. A-115
 A3.13.3—Legal Load Rating (6A.4.4) .. A-116
 A3.13.4—Permit Load Rating (6A.4.5) ... A-116
 A3.13.4.1—Strength II Limit State (6A.5.4.2.1) ... A-117
 A3.13.4.1a—Flexure .. A-117
 A3.13.4.1b—Shear (Using MCFT) .. A-117
 A3.13.4.2—Service I Limit State (Optional) (6A.5.4.2.2b) ... A-118
 A3.13.4.2a—Simplified Check Using $0.75M_n$ (C6A.4.2.2.2) .. A-118
 A3.13.4.2b—Refined Check Using $0.9f_f$... A-118
A3.14—Summary of Rating Factors .. A-120
A3.15—References .. A-120

A4—TIMBER STRINGER BRIDGE: EVALUATION OF AN INTERIOR STRINGER A-121

PART A—LOAD AND RESISTANCE FACTOR RATING METHOD ... A-121
A4A.1—Bridge Data .. A-121
A4A.2—Dead Load Analysis—Interior Stringer in Flexure .. A-121
 A4A.2.1—Components and Attachments, DC ... A-121
 A4A.2.2—Wearing Surface .. A-121
PART B—ALLOWABLE STRESS RATING METHOD .. A-129
A4B.1—Bridge Data .. A-129
A4B.2—Section Properties .. A-129
A4B.3—Dead Load Analysis—Interior Stringer ... A-129
A4B.4—Live Load Analysis—Interior Stringer ... A-129
A4B.5—Allowable Stress Rating (6B.3.1, 6B.4.2, 6B.5.2) .. A-130
A4B.5.1—Impact (Use standard AASHTO) (6B.6.4) .. A-130
A4B.5.2—Distribution (Use standard AASHTO) (6B.6.3) .. A-130
A4B.5.3—Stresses to be Used (Use NDS, National Design Specification for Wood Construction, 2005 Edition) ... A-130
A4B.5.3.1—Inventory Level Stresses (6B.5.2.7) ... A-131
A4B.5.3.2—Operating Level Stresses (Use standard AASHTO) (6B.5.2.7) A-131
A4B.5.4—Inventory Level Rating for Flexure ... A-131
A4B.5.5—Operating Level Rating for Flexure ... A-131
A4B.5.6—Check Horizontal Shear .. A-132
A4B.5.7—Inventory Level Rating for Shear ... A-133
A4B.5.8—Operating Level Rating for Shear ... A-134
A4B.5.9—Summary of Ratings for Allowable Stress Rating Method A-134
A5—FOUR-SPAN CONTINUOUS STRAIGHT WELDED PLATE GIRDER BRIDGE: EVALUATION OF AN INTERIOR GIRDER

A5.1—Bridge Data
 A5.1.1—Girder Bracing
 A5.1.2—Girder Section Properties
 A5.1.3—Girder Sections

A5.2—Dead Load Analysis—Interior Girder
 A5.2.1—Components and Attachments, DC
 A5.2.2—Wearing Surface, DW

A5.3—Dead Load Effects
 A5.3.1—Maximum Positive Moment at Span 1 (at 0.4L = 44.8 ft)
 A5.3.2—Maximum Positive Moment at Span 2 (at 0.5L = 182 ft)
 A5.3.3—Maximum Negative Moment at Pier 2 (252 ft)
 A5.3.4—Maximum Shear left of Pier 1 (112 ft)
 A5.3.5—Negative Moments at Pier 1

A5.4—Live Load Distribution Factors
 A5.4.1—Positive Flexure and Shear to the Left of Pier 1
 A5.4.1.1—Interior Girder
 A5.4.2—Negative Flexure
 A5.4.2.1—Interior Girder

A5.5—Live Load Effects
 A5.5.1—Maximum Positive Moment at Span 1 (at 0.4L)
 A5.5.1.1—Design Live Load (HL-93)
 A5.5.1.2—Legal Loads
 A5.5.2—Maximum Positive Moment at Span 2 (at 0.5L)
 A5.5.2.1—Design Live Load (HL-93)
 A5.5.2.2—Legal Loads (Use Only Truck Loads)
 A5.5.3—Maximum Negative Moment at Pier 2
 A5.5.3.1—Calculate Maximum Negative Moment at Pier 2
 A5.5.3.1a—Design Live Load (HL-93)
 A5.5.3.1b—Legal Loads (Truck Loads and Lane-Type Load)
 A5.5.4—Maximum Shear at Pier 1 (Left of Support)
 A5.5.4.1—Design Live Load (HL-93)
 A5.5.4.2—Legal Loads

A5.6—Compute Nominal Flexural Resistance of Section (Positive and Negative Moment)
 A5.6.1—Noncomposite Symmetric Section
 A5.6.1.1—Check Web for Noncompact Slenderness Limit
 A5.6.2—Regions B and H—Positive Moment Sections with Continuously Braced Compression Flanges
 A5.6.2.1—Calculate Plastic Moment, M_p (LRFD Design D6.1)
A5.6.3—Region E—Negative Moment Sections with Discretely Braced Compression Flange (LRFD Design A6.1.1) .. A-150
A5.6.3.1—Calculate Local Buckling Resistance (LRFD Design A6.3.2) .. A-150
A5.6.3.2—Calculate Lateral Torsional Buckling Resistance (LRFD Design A6.3.3) A-151
A5.7—General Load Rating Equation (6A.4.2) .. A-155
A5.8—Design Load Rating ... A-155
A5.8.1—Strength I Limit State ... A-155
A5.8.1.1—Flexure at Span 1, 0.4L .. A-155
A5.8.1.2—Flexure at Span 2, 0.5L .. A-155
A5.8.1.3—Flexure at Pier 2 ... A-156
A5.8.2—Service II Limit State (6A.6.4.1) ... A-156
A5.8.2.1—At Span 1, 0.4L ... A-156
A5.8.2.2—At Span 2, 0.5L ... A-156
A5.8.2.3—At Pier 2 ... A-156
A5.8.3—Legal Load Rating (6A.4.4) .. A-157
A5.8.3.1—Strength I Limit State (6A.6.4.2.1) ... A-157
A5.8.3.1a—Flexure at Span 1, 0.4L ... A-157
A5.8.3.1b—Flexure at Span 2, 0.5L ... A-157
A5.8.3.1c—Flexure at Pier 2 .. A-157
A5.8.3.2—Service II Limit State (6A.6.4.2.2) ... A-157
A5.8.3.2a—At Span 1, 0.4L (Type 3-3 Truck Governs) ... A-158
A5.8.3.2b—At Span 2, 0.5L (Type 3-3 Truck Governs) ... A-158
A5.8.3.2c—At Pier 2 (Lane-Type Load Governs) .. A-158
A5.9—Shear Evaluation .. A-158
A5.9.1—Shear Resistance at Pier 1 ... A-158
A5.9.2—Shear Resistance for Interior Panel .. A-159
A5.10—Shear Rating at Pier 1 ... A-160
A5.10.1—Design Load Rating ... A-161
A5.10.2—Legal Load Rating (Type 3-3 Governs) .. A-161
A5.10.3—Permit Load Rating (6A.4.5) ... A-161
A5.10.3.1—Flexure at Span 1, 0.4L ... A-162
A5.10.3.2—Flexure at Span 2, 0.5L ... A-163
A5.10.3.3—Flexure at Pier 2 .. A-163
A5.11—Summary of Rating Factors .. A-163
A5.12—Reference .. A-163

A6—THROUGH PRATT TRUSS BRIDGE: DESIGN LOAD CHECK OF SELECTED TRUSS MEMBERS A-165
A6.1—Bridge Data ... A-165
A6.2—Member Properties ... A-165
A6.3—Dead Load Analysis .. A-165
A6.4—Live Load Analysis (Design Load Check) .. A-166
A6.4.1—Live Load Distribution Factors .. A-167
A6.4.1.1—One Lane Loaded (See Figure A6.4.1-1) .. A-167
A6.4.1.2—Two Lanes Loaded (See Figure A6.4.1-1) .. A-167
A6.4.1.3—Three Lanes Loaded (See Figure A6.4.1-1) .. A-167
APPENDIX A: ILLUSTRATIVE EXAMPLES

A6.4.2—Live Load Force Effects (Due to HL-93) ... A-167
A6.4.2.1—Member TC4 (See Figure A6.3-1) .. A-167
A6.4.2.2—Member BC4 .. A-168
A6.4.2.3—Member D1 .. A-169
A6.4.2.4—Member V1 .. A-169
A6.5—Compute Nominal Resistance of Members ... A-169
A6.5.1—Top Chord TC4 (Compression Member) ... A-169
A6.5.2—Bottom Chord Member BC4 (Tension Member) .. A-172
A6.5.2.1—Limit State: Yielding over Gross Area (in the Shank of the Eyebar) A-172
A6.5.2.2—Limit State: Fracture at the Eyebar Head ... A-172
A6.5.3—Diagonal Member D1 ... A-172
A6.5.3.1—Limit State: Yielding over Gross Area (in the Shank of the Eyebar) A-172
A6.5.3.2—Limit State: Fracture at the Eyebar Head ... A-173
A6.5.4—Vertical Member V1 ... A-173
A6.5.4.1—Limit State: Yielding over Gross Area ... A-174
A6.5.4.2—Limit State: Fracture at Net Area (at Rivet Holes) ... A-174
A6.6—General Load Rating Equation ... A-175
A6.7—Evaluation Factors (for Strength Limit States) ... A-175
A6.7.1—Resistance Factor, ϕ ... A-175
A6.7.2—Condition Factor, γ_c .. A-175
A6.7.3—System Factor, γ_s .. A-175
A6.8—Design Load Rating (6A.4.3) .. A-175
A6.8.1—Top Chord TC4 ... A-176
A6.8.2—Bottom Chord BC4 .. A-176
A6.8.3—Diagonal D1 .. A-176
A6.8.4—Vertical V1 ... A-176
A6.9—Summary of Rating Factors .. A-177
A6.10—Rating of Steel Compression Member (TC4) with Eccentric Connections A-177
A6.10.1—Cross Section of Top Chord ... A-177
A6.11—References ... A-180

A7—REINFORCED CONCRETE SLAB BRIDGE DESIGN AND LEGAL LOAD CHECK A-181
A7.1—Bridge Data .. A-181
A7.2—Dead Load Analysis ... A-182
A7.2.1—Interior Strip—Unit (One Foot) Width .. A-182
A7.2.1.1—Components, DC .. A-182
A7.2.1.2—Wearing Surface, DW .. A-182
A7.3—Live Load Analysis (Design Load Check) ... A-182
A7.3.1—One Lane Loaded .. A-182
A7.3.2—More than One Lane Loaded ... A-183
A7.3.2.1—Midspan Live Load Force Effects (HL-93) .. A-184
A7.4—Compute Nominal Resistance ... A-184
A7.5—Maximum Reinforcement (6A.5.5, LRFD Design 5.6.2.1) A-185
A7.6—Minimum Reinforcement (6A.5.6, LRFD Design 5.6.3.3) A-186
A7.7—Shear ... A-187
A7.8—General Load-Rating Equation (6A.4.2) ... A-187
A7.9—Evaluation Factors (for Strength Limit States) ... A-187
A7.9.1—Resistance Factor, \(\varphi \) (LRFD Design 5.5.4.2) .. A-187
A7.9.2—Condition Factor, \(\varphi_c \) (6A.4.2.3) .. A-187
A7.9.3—System Factor, \(\varphi_s \) (6A.4.2.4) .. A-187
A7.10—Design Load Rating (6A.4.3) ... A-187
A7.10.1—Strength I Limit State (6A.5.4.1) ... A-187
A7.10.1a—Inventory Level ... A-188
A7.10.1b—Operating Level ... A-188
A7.10.2—Service Limit State ... A-188
A7.11—Legal Load Rating (6A.4.4) ... A-188
A7.11.1—Live Load Demand .. A-188
A7.11.1a—AASHTO Legal Loads—Routine Commercial Traffic—Type 3, 3S2, 3-3 (Rate for all 3) .. A-188
A7.11.1b—Live Load: AASHTO Legal Loads—Specialized Hauling Vehicles (SHVs) and Notional Rating Load—SU4, SU5, SU6, SU7, and NRL ... A-188
A7.11.2—Strength I Limit State .. A-188
A7.11.2a—For Types 3, 3S2, and 3-3 .. A-188
A7.11.2b—For Specialized Hauling Vehicles (SHVs) and NRL A-188.1
A7.11.3—Service Limit State ... A-188.1
A7.11.4—Shear .. A-188.1
A7.11.5—Summary ... A-188.1
A7.12—Summary of Rating Factors ... A-188.2
A7.13—Reference .. A-188.2

A8—TWO-GIRDER STEEL BRIDGE: DESIGN LOAD RATING OF GIRDER AND FLOORBEAM A-189
A8.1—Bridge Data .. A-189
A8.2—Rating of Intermediate Floorbeam ... A-189
A8.3—Dead Load Force Effects ... A-189
A8.4—Live Load (HL-93) Force Effects .. A-192
A8.4.1—Live Load (HL-93) Reactions on Intermediate Floorbeam A-192
A8.4.2—Live Load (HL-93) Maximum Positive Moment .. A-192
A8.4.3—Live Load (HL-93) Maximum Shear ... A-193
A8.4.4—Live Load (HL-93) Maximum Negative Moment ... A-194
A8.5—Summary of Live Load (HL-93) Force Effects in Floorbeam A-195
A8.6—Compute Nominal Resistance of Floorbeam .. A-196
A8.6.1—Positive Moment Section—Noncomposite Construction A-196
A8.6.2—Negative Moment Section ... A-198
A8.6.3—Nominal Shear Resistance (unstiffened web). .. A-201
A8.7—General Load-Rating Equation (6A.4.2) .. A-201
A8.7.1—Evaluation Factors (for Strength Limit States) ... A-201
A8.7.1.1—Resistance Factor, \(\varphi \) (LRFD Design 6.5.4.2) .. A-201
A8.7.1.2—Condition Factor, \(\varphi_c \) (6A.4.2.3) .. A-201
A8.7.1.3—System Factor, \(\varphi_s \) (6A.4.2.4) .. A-201
A8.7.2—Design Load Rating (6A.4.3) ... A-202
A8.7.2.1—Strength I Limit State (6A.6.4.1)...A-202
A8.7.2.1a—Flexure at 8.17 ft from West Girder (Max. Positive Live Load Moment)........A-202
A8.7.2.1b—Flexure at East Girder (Max. Negative Moment)..A-202
A8.7.2.1c—Shear at East Girder..A-202
A8.7.2.2—Service II Limit State..A-202
A8.7.2.2a—at 8.17 ft from West Girder..A-203
A8.7.2.2b—at East Girder...A-203
A8.8—Rating of East Girder (G1) ..A-204
A8.9—Dead Load Force Effects...A-204
A8.10—Live Load Analysis...A-205
A8.11—Compute Nominal Flexural Resistance of Section..A-207
A8.11.1—Local Buckling Resistance ..A-207
A8.11.2—Lateral Torsional Buckling Resistance (LRFD Design 6.10.8.2.3).....................A-208
A8.12—General Load-Rating Equation (6A.4.2)..A-209
A8.12.1—Evaluation Factors (for Strength Limit States)...A-209
A8.12.1.1—Resistance Factor, φ ..A-209
A8.12.1.2—Condition Factor, q_c ...A-209
A8.12.1.3—System Factor, φ_s ..A-209
A8.12.2—Design Load Rating (6A.4.3)..A-209
A8.12.2.1—Flexure..A-210
A8.12.2.1a—Strength I Limit State...A-210
A8.12.2.1b—Service II Limit State...A-210
A8.12.2.2—Shear...A-210
A8.12.2.2a—Strength I Limit State...A-210
A8.13—Summary of Rating Factors...A-212
A8.14—References ..A-212

A9—P/S CONCRETE ADJACENT BOX-BEAM BRIDGE: DESIGN LOAD AND
PERMIT LOAD RATING OF AN INTERIOR BEAM...A-213
A9.1—Bridge Data ...A-213
A9.1.1—Section Properties ...A-213
A9.2—Dead Load Analysis—Interior Beam ...A-213
A9.2.1—Components and Attachments, DC ...A-213
A9.2.2—Wearing Surface and Utilities, DW ...A-215
A9.3—Live Load Analysis—Interior Girder ...A-215
A9.3.1—Compute Live Load Distribution Factors for an Interior Beam
(LRFD Design Table 4.6.2.2b-1) ..A-215
A9.3.1.1—Distribution Factor for Moment ..A-216
A9.3.2—Maximum Live Load (HL-93) Moment at Midspan ..A-216
A9.4—Compute Nominal Flexural Resistance ...A-216
A9.5—Maximum Reinforcement (C6A.5.5)...A-218
A9.6—Minimum Reinforcement ..A-218
A9.6.1—Determine Effective Prestress Force, P_{pe} ...A-219
A9.6.1.1—Loss Due to Elastic Shortening, Δf_{ES} (LRFD Design 5.9.3.2.3a)............A-219
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9.6.1.2</td>
<td>Approximate Lump Sum Estimate of Time-Dependent Losses, $\Delta f_{pt,T}$</td>
<td>A-220</td>
</tr>
<tr>
<td>A9.6.1.3</td>
<td>Total Prestress Losses, f_{pT}</td>
<td>A-222</td>
</tr>
<tr>
<td>A9.7</td>
<td>General Load-Rating Equation (6A.4.2)</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.1</td>
<td>Evaluation Factors for Strength Limit States</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.1.1</td>
<td>Resistance Factor, φ</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.1.2</td>
<td>Condition Factor, φ_c</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.1.3</td>
<td>System Factor, φ_s</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.2</td>
<td>Design Load Rating (6A.4.3)</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.2.1</td>
<td>Strength I Limit State (6A.5.4.1)</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.2.1a</td>
<td>Flexure at Midspan</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.2.2</td>
<td>Service III Limit State for Inventory Level (6A.5.4.1)</td>
<td>A-224</td>
</tr>
<tr>
<td>A9.7.3</td>
<td>Legal Load Rating (6A.4.4)</td>
<td>A-224</td>
</tr>
<tr>
<td>A9.7.4</td>
<td>Permit Load Rating (6A.4.5)</td>
<td>A-224</td>
</tr>
<tr>
<td>A9.7.4.1</td>
<td>Strength II Limit State</td>
<td>A-225</td>
</tr>
<tr>
<td>A9.7.4.2</td>
<td>Service I Limit State</td>
<td>A-225</td>
</tr>
<tr>
<td>A9.7.4.2a</td>
<td>Simplified check using $0.75M_n$</td>
<td>A-226</td>
</tr>
<tr>
<td>A9.7.4.2b</td>
<td>Refined check using $0.90f_y$</td>
<td>A-226</td>
</tr>
<tr>
<td>A9.7.5</td>
<td>Surcharge Live Load, LS</td>
<td>A-235</td>
</tr>
<tr>
<td>A9.7.5a</td>
<td>Simplified check using $0.75M_n$</td>
<td>A-235</td>
</tr>
<tr>
<td>A9.7.6</td>
<td>System Factor</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.7</td>
<td>Condition Factor</td>
<td>A-223</td>
</tr>
<tr>
<td>A9.7.8</td>
<td>Service III Limit State for Inventory Level</td>
<td>A-224</td>
</tr>
<tr>
<td>A9.7.9</td>
<td>Total Prestress Losses</td>
<td>A-222</td>
</tr>
<tr>
<td>A9.8</td>
<td>Summary of Rating Factors</td>
<td>A-228</td>
</tr>
<tr>
<td>A9.9</td>
<td>Reference</td>
<td>A-228</td>
</tr>
<tr>
<td>A10</td>
<td>LRFR RATING OF A REINFORCED CONCRETE BOX CULVERT</td>
<td>A-229</td>
</tr>
<tr>
<td>A10.1</td>
<td>Culvert Data</td>
<td>A-229</td>
</tr>
<tr>
<td>A10.2</td>
<td>Dead Load Analysis, DC</td>
<td>A-229</td>
</tr>
<tr>
<td>A10.3</td>
<td>Wearing Surface, DW</td>
<td>A-230</td>
</tr>
<tr>
<td>A10.4</td>
<td>Earth Load: Vertical, EV</td>
<td>A-230</td>
</tr>
<tr>
<td>A10.5</td>
<td>Earth Load: Horizontal, EH</td>
<td>A-231</td>
</tr>
<tr>
<td>A10.6</td>
<td>Surcharge Earth Load: Horizontal, ES</td>
<td>A-231</td>
</tr>
<tr>
<td>A10.7</td>
<td>Live Load Analysis, LL</td>
<td>A-231</td>
</tr>
<tr>
<td>A10.7.1</td>
<td>Design Load: HL-93 Tandem</td>
<td>A-233</td>
</tr>
<tr>
<td>A10.7.2</td>
<td>Design Load: HL-93 Truck</td>
<td>A-234</td>
</tr>
<tr>
<td>A10.7.3</td>
<td>Legal Load: Type 3</td>
<td>A-234</td>
</tr>
<tr>
<td>A10.7.4</td>
<td>Legal Load: SU-4</td>
<td>A-235</td>
</tr>
<tr>
<td>A10.7.5</td>
<td>Surcharge Live Load, LS</td>
<td>A-235</td>
</tr>
<tr>
<td>A10.8</td>
<td>Structural Analysis of Box Culvert</td>
<td>A-235</td>
</tr>
<tr>
<td>A10.9</td>
<td>Nominal Flexural Resistance</td>
<td>A-237</td>
</tr>
<tr>
<td>A10.9.1</td>
<td>Top Slab Center</td>
<td>A-237</td>
</tr>
<tr>
<td>A10.9.2</td>
<td>Top Slab Corner</td>
<td>A-238</td>
</tr>
<tr>
<td>A10.9.3</td>
<td>Bottom Slab Center</td>
<td>A-238</td>
</tr>
<tr>
<td>A10.9.4</td>
<td>Bottom Slab Corner</td>
<td>A-239</td>
</tr>
<tr>
<td>A10.9.5</td>
<td>Sidewall: Top–Center–Bottom</td>
<td>A-239</td>
</tr>
<tr>
<td>A10.10</td>
<td>Nominal Shear Resistance</td>
<td>A-240</td>
</tr>
<tr>
<td>A10.10.1</td>
<td>Top Slab Corner</td>
<td>A-240</td>
</tr>
<tr>
<td>A10.10.2</td>
<td>Bottom Slab Corner</td>
<td>A-241</td>
</tr>
<tr>
<td>A10.10.3</td>
<td>Sidewall Top–Center–Bottom</td>
<td>A-241</td>
</tr>
</tbody>
</table>
APPENDIX A: ILLUSTRATIVE EXAMPLES

A10.11—Axial Thrust Resistance .. A-242
A10.12—Calculate Rating Factors, \(RF \) .. A-243
 A10.12.1—Load Factors for Culvert Load Rating (Table 6A.5.12.5-1) .. A-243
 A10.12.3—Strength I Limit State: Design Load Rating Factor Calculation for Shear A-245
 A10.12.5—Strength I Limit State: Legal Load Rating for Flexure ... A-248
 A10.12.6—Strength I Limit State: Legal Load Rating for Shear ... A-249
 A10.12.7—Strength I Limit State: Legal Load Rating for Axial Thrust ... A-250
A10.13—Rating Summary .. A-250
A10.14—Capacity Check for Permanent Loads .. A-250

A11—THROUGH TRUSS BRIDGE: GUSSET PLATE RATING ... A-253
A11.1—Bridge and Member Data .. A-253

PART A—LOAD AND RESISTANCE FACTOR RATING METHOD .. A-255
A11A.1—Load and Resistance Factor Rating of Gusset Plates .. A-255
A11A.2—Check the Tension Resistance of M1 ... A-255
A11A.3—Check the Chord Splice Resistance ... A-258
A11A.4—Check Tension Resistance of M2 ... A-261
A11A.5—Check the Compression Resistance of M3 .. A-263
A11A.6—Check the Compression Resistance of M4 .. A-266
A11A.7—Check Horizontal Shear Capacity of the Gusset Plate .. A-270
A11A.8—Check Vertical Shear Capacity of the Gusset Plate ... A-271
A11A.9—Summary of LRFR Load Rating Factors .. A-272

PART B—LOAD FACTOR RATING METHOD ... A-272
A11B.1—Load Factor Rating of Gusset Plates ... A-272
A11B.2—Check the Tension Resistance of M1 ... A-273
A11B.3—Check the Chord Splice Resistance ... A-274
A11B.4—Check Tension Resistance of M2 ... A-275
A11B.5—Check the Compression Resistance of M3 .. A-276
A11B.6—Check the Compression Resistance of M4 .. A-277
A11B.7—Check Horizontal Shear Capacity of the Gusset Plate .. A-278
A11B.8—Check Vertical Shear Capacity of the Gusset Plate ... A-279
A11B.9—Summary of LFR Load Rating Factors .. A-280
A1—SIMPLE SPAN COMPOSITE STEEL STRINGER BRIDGE

Editor’s Note: Since all of Example A1 was revised by the AASHTO Committee on Bridges and Structures at their 2019 Annual Meeting, the new text in this Section has not been underlined.

PART A—LOAD AND RESISTANCE FACTOR RATING METHOD

A1A.1—Evaluation of an Interior Stringer

Note: When reference is given as “LRFD Design" and "MBE-3," it refers to the 8th edition of the AASHTO LRFD Bridge Design Specifications and 3rd edition of the Manual for Bridge Evaluation respectively.

A1A.1.1—Bridge Data

Span: 65.00 ft
Year Built: 1964
Material: Structural Steel: A36 Steel
\[F_y = 36 \text{ ksi} \]
Deck Concrete: \[f'_c = 3.0 \text{ ksi} \]
Structure Condition: No deterioration (NBI Item 59 = 7)
Member is in good condition
Riding Surface: Minor surface deviations (Field verified and documented)
\[ADTT \] (one direction): 700
\[ADTT_{SL} \] 200 (ADTT at year 0)
\[ADTT_{SL, LIMIT} \] 1,200 (roadway limit ADTT)
Average traffic grown rate: 1 percent
Skew: 0°
Additional Information: Diaphragms spaced at 16 ft 3 in.
Overlay Thickness: None
Bridge category: Interstate Ramp Structure
Bridge Geometry: Straight (No Curvature)

A1A.1.2—Section Properties

In unshored construction, the noncomposite steel stringer must support its own weight plus the weight of the concrete slab. For the composite section, the concrete is transformed into an equivalent area of steel by dividing the area of the slab by the modular ratio. Live load plus impact stresses are carried by the composite section using a modular ratio of \(n \). To account for the effect of creep, superimposed dead-load stresses are carried by the composite section using a modular ratio of \(3n \) (LRFD Design 6.10.1.1.1b). The as-built section properties are used in this analysis as there is no deterioration.

© 2020 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
A1A.1.2.1—Noncomposite Section Properties

Section properties of rolled shapes are subject to change with changes in rolling practices of the steel industry. Identify steel components from available records, construction date, and field measurements. The section properties for this beam were determined from AISC Manual of Steel Construction, Sixth Edition, printed during the period from July 1963 to March 1967, which is consistent with the “Year Built” date for this bridge.

Shape: $W_{33} \times 130$

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_f</td>
<td>0.855 in.</td>
</tr>
<tr>
<td>b_f</td>
<td>11.510 in.</td>
</tr>
<tr>
<td>t_w</td>
<td>0.580 in.</td>
</tr>
<tr>
<td>d</td>
<td>33.10 in.</td>
</tr>
<tr>
<td>A</td>
<td>38.26 in.2</td>
</tr>
<tr>
<td>I</td>
<td>6,699 in.4</td>
</tr>
</tbody>
</table>

Identify steel components from available records, construction date, and field measurements. The section properties for this beam were determined from AISC Manual of Steel Construction, Sixth Edition, printed during the period from July 1963 to March 1967, which is consistent with the “Year Built” date for this bridge.

Bottom Cover Plate: $\frac{5}{8}$ in. \times 10 1/2 in.

$A_{PL} = t_{PL} \times b_{PL} = 6.56$ in.2

$I_{PL} = 0.21$ in.4 ≈ 0 in.4 (negligible)

Distance to C.G. =

\[
\bar{y} = \frac{\frac{d}{2} + t_{PL}}{A_{PL} + A_{W}} \left(A_{W33\times130} \right) + \left(\frac{t_{PL}}{2} \right) \left(t_{PL} \times b_{PL} \right)
\]

\[
\bar{y} = \frac{(17.175)(38.26) + (0.313)(6.56)}{38.26 + 6.56}
\]

\[
\bar{y} = 14.707 \text{ in. from bottom of section to centroid}
\]

\[
I_x = 6,699 + 38.26(2.468)^2 + 0.21 + 6.56(14.395)^2
\]

\[
I_x = 8,291.6 \text{ in.4}
\]

\[
S_t = \frac{8,291.6}{19.018} = 436.0 \text{ in.3} \quad \text{Section Modulus at top of steel}
\]

\[
S_b = \frac{8,291.6}{14.707} = 563.8 \text{ in.3} \quad \text{Section Modulus at bottom of steel}
\]

A1A.1.2.2—Composite Section Properties

Effective Flange Width, b_n, may be taken as the tributary width perpendicular to the axis of the member.

$b_n = 7'–4" = 88.0$ in.

Modular Ratio, n

\[
f'_c = 3.00 \text{ ksi}
\]

\[
E_{tuck} = 33,000(w'c)^{1.5} \sqrt{f'_c}
\]

\[
= 33,000(0.145 \text{ kcf})^{1.5} \sqrt{3.00} \text{ ksi}
\]

\[
= 3,155.9 \text{ ksi}
\]

then,

\[
n = \frac{E_g}{E_{tuck}} = \frac{29,000}{3,155.9} = 9.2 \quad \text{(rounded to nearest 1st decimal)}
\]

Typical Interior Stringer:

Short-Term Composite, n:

$W_{33} \times 130, PL \frac{5}{8}$ in. \times 10 1/2 in. and Conc. 7 1/4 in. \times 88 in.

Effective Flange Width, $b_n = \frac{88.0}{n} = 9.57$ in.
$$\bar{y} = \frac{(17.175)(38.26) + (0.3125)(6.56) + \left(\frac{88}{9.2} \times 7.25\right)(37.35)}{38.26 + 6.56 + \left(\frac{88}{9.2} \times 7.25\right)}$$

$$\bar{y} = 28.461 \text{ in. from bottom of section to centroid}$$

$$I_x = (6,699) + (38.26)(11.286)^2 + 0.21 + 6.56(28.149)^2 + \left(\frac{88}{9.2}\right)(7.25)^3 + \left(\frac{88}{9.2}\right) \times 7.25 \times (8.889)^2$$

$$I_x = 22,533.7 \text{ in}^4$$

$$S_t = \frac{22,533.7}{5.264} = 4,284.5 \text{ in}^3 \quad \text{Section Modulus at top of steel}$$

$$S_b = \frac{22,533.7}{28.461} = 792.4 \text{ in}^3 \quad \text{Section Modulus at bottom of steel}$$

Long-Term Composite, 3n:

W33 × 130, PL 5/8 in. × 10 1/2 in. and Conc. 7 1/4 in. × 88 in.

Effective Flange Width, \(b_e = \frac{88}{3 \times 9} = 3.26 \text{ in.}\)

$$\bar{y} = \frac{(17.175)(38.26) + (0.3125)(6.56) + \left(\frac{88}{27.6} \times 7.25\right)(37.35)}{38.26 + 6.56 + \left(\frac{88}{27.6} \times 7.25\right)}$$

$$\bar{y} = 22.411 \text{ in. from bottom of section to centroid}$$

$$I_x = (6,699) + (38.26)(5.236)^2 + 0.21 + 6.56(22.099)^2 + \left(\frac{88}{27.6}\right)(7.25)^3 + \left(\frac{88}{27.6}\right) \times 7.25 \times (14.939)^2$$

$$I_x = 16,211.9 \text{ in}^4$$

$$S_t = \frac{16,211.9}{11.314} = 1,432.9 \text{ in}^3 \quad \text{Section Modulus at top of steel}$$

$$S_b = \frac{16,211.9}{22.411} = 723.4 \text{ in}^3 \quad \text{Section Modulus at bottom of steel}$$

A1A.1.2.3—Summary of Section Properties at Midspan

A1A.1.2.3a—Steel Section Only

\(S_t = 436.0 \text{ in}^3\)
$S_b = 563.8 \text{ in.}^3$

*A1A.1.2.3b—Composite Section—Short Term, $n = 9.2$

$S_t = 4,284.5 \text{ in.}^3$

$S_b = 792.4 \text{ in.}^3$

*A1A.1.2.3c—Composite Section—Long Term, $3n = 27.6$

$S_t = 1,432.9 \text{ in.}^3$

$S_b = 723.4 \text{ in.}^3$

A1A.1.3—Dead-Load Analysis—Interior Stringer

A1A.1.3.1—Components and Attachments, DC

In general, attachments may include connection plates, stiffeners, diaphragms, bracing, and other miscellaneous components. A refined rating calculation accounts for major weight components; alternatively, a percentage of stringer weight can be used as an estimate. For this example, three interior diaphragms were taken into account and end diaphragms that are directly over the supports were neglected when estimating uniform span loads.

A1A.1.3.1a—Noncomposite Dead Loads, DC1

1. Dead load due to Deck
 \[
 = \left(7.333 \text{ ft} \right) \left(\frac{7.25 \text{ in.}}{12} \right) \left(0.150 \text{ kcf} \right)
 \]
 \[
 = 0.665 \text{ kip/ft}
 \]

2. Stringer (self-weight)
 \[
 = (0.130 \text{ kip/ft}) \times 1.06
 \]
 \[
 (\text{six percent increase for connections})
 \]
 \[
 = 0.138 \text{ kip/ft}
 \]

3. Cover Plate \((38 \text{ ft} \times 10.5 \text{ in.} \times 0.625 \text{ in.})\)
 \[
 = \frac{38 \text{ ft} \times 10.5 \text{ in.}}{12} \times \frac{0.625 \text{ in.}}{12} \times 0.49 \text{ kcf}
 \]
 \[
 = 0.8486 \text{ kip}
 \]
 \[
 \text{approx. uniform loading (over 65 ft stringer)}
 \]
 \[
 = (0.8486 \text{ kip}) \times (1.06) / (65 \text{ ft})
 \]
 \[
 = 0.014 \text{ kip/ft}
 \]

4. Diaphragms:
 \[
 = (3)(0.0427 \text{ kip/ft})(7.333 \text{ ft})
 \]
 \[
 = 0.9394 \text{ kip}
 \]
 \[
 \text{approx. uniform loading (over 65 ft stringer)}
 \]
 \[
 = (0.9394 \text{ kip}) \times (1.06)/(65 \text{ ft})
 \]
 \[
 = 0.016 \text{ kip/ft}
 \]

(Note: The Uniform diaphragm load was used for simplicity. Using the uniform load instead of point loads may result in slight unconservative results.)

So, Total dead load \((DC_1) / \text{Stringer}\)

\[
= 0.665 + 0.138 + 0.014 + 0.016
\]

\[
= 0.833 \text{ kip/ft}
\]

Dead Load Moment

\[
M_{DC1} = \frac{0.833 \text{ kip/ft} \times (65 \text{ ft})^2}{8} = 439.9 \text{ kip-ft at midspan}
\]

Dead Load Shear

\[
V_{DC1} = \frac{0.833 \text{ kip/ft} \times (65 \text{ ft})}{2} = 27.1 \text{ kip at bearing}
\]
A1A.1.3.1b—Composite Dead Loads, DC2

All permanent loads on the deck are uniformly distributed among the beams. LRFD Design 4.6.2.2.1

The unit weight of reinforced concrete is generally taken as .005 kcf greater than the unit weight of plain concrete; hence for estimating concrete load 0.150 kcf was assumed. LRFD Design C3.5.1

Barrier Weight

Curb = (1 ft) x (10 in/12) x (0.150 kcf) (2 curbs / 4 beams)
= 0.063 kip/ft

Parapet = [(6 in x 19 in) + (18 in x 12 in)]/144 x (0.150 kcf) (2 parapets / 4 beams)
= 0.172 kip/ft

Railing = Assume 0.020 kip/ft (2 Railings / 4 beams)
= 0.010 kip/ft

So, Total barrier weight/stringer = 0.063 + 0.172 + 0.010
= 0.245 kip/ft

Dead Load Moment = $M_{dc} = \frac{0.245(65)^2}{8}$ = 129.4 kip-ft at midspan

Dead Load Shear = $V_{dc} = \frac{0.245(65)}{2}$ = 8.0 kip at bearing

A1A.1.3.2—Wearing Surface

There is no wearing surface on the bridge.

As a result, $DW = 0.0$

A1A.1.4—Live Load Analysis—Interior Stringer (LRFD Design Table 4.6.2.2.1-1)

A1A.1.4.1—Compute Live Load Distribution Factors (Type (a) cross section) (LRFD Design Table 4.6.2.2.1-1)

Longitudinal Stiffness Parameter, K_g

$K_g = n \left(I + A e_g^2 \right)$

in which $n = \frac{E_B}{E_D}$

$E_D = 33,000 \left(w_c \right)^{1.5} \sqrt{f_c^2}$

= 33,000 (0.145)$^{1.5}$ $\sqrt{3}$

= 3,155.9 ksi

$E_B = 29,000$ ksi

Beam + Cover Plate

$I = 8,291.6$ in.4
\(A = 44.82 \text{ in.}^2 \)

Distance to centroid from top fiber = 19.018

\(e_g = \frac{1}{2} (7.25) + 19.02 = 22.43 \text{ in.} \)

\(K_g = \frac{29,000}{3,155.9} \left(8,291.6 + 44.82 \times 22.643^2 \right) \)

\(K_g = 287,354.0 \text{ in.}^4 \)

A1A.1.4.1a—Distribution Factor for Moment, \(g_m \) (LRFD Design Table 4.6.2.2b-1)

Range of Applicability Check:

a. \(S = 7.3333 \text{ ft} \) (meets \(3.5 \leq S \leq 16 \))

b. \(t_s = 7.25 \text{ in} \) (meets \(4.5 \leq t_s \leq 12.0 \))

c. \(L = 65.00 \text{ ft} \) (meets \(20.0 \leq L \leq 240 \))

d. \(N_b = 4 \) (meets \(N_b \geq 4 \))

e. \(K_g = 287,349 \) (meets \(10000 \leq K_g \leq 7,000.000 \))

Since all the variables fall within the range of applicability given for Cross Section a, simplified LLDF will be established using the expressions given in the Table.

\[
\frac{K_g}{12.0L^3} = \frac{287,354.0}{12.0 \times 65 \times 7.25^3} = 0.967
\]

One Lane Loaded LLDF:

\[
g_{m1} = 0.06 + \left(\frac{S}{14} \right)^{0.4} \frac{S}{L} \left[\left(\frac{K_g}{12.0L^3} \right)^{0.1} \right]
\]

\[
= 0.06 + \left(\frac{7.3333 \text{ ft}}{14} \right)^{0.4} \left(\frac{7.3333 \text{ ft}}{65 \text{ ft}} \right)^{0.3} (0.967)^{0.1}
\]

\[
= 0.460
\]

Two or More Lanes Loaded LLDF:

\[
g_{m2} = 0.075 + \left(\frac{S}{9.5} \right)^{0.6} \frac{S}{L} \left[\left(\frac{K_g}{12.0L^3} \right)^{0.1} \right]
\]

\[
= 0.075 + \left(\frac{7.3333}{9.5} \right)^{0.6} \left(\frac{7.3333}{65} \right)^{0.2} (0.967)^{0.1}
\]

\[
= 0.627 > g_{m1} = 0.460
\]

So, use \(g_m = 0.627 \)
A1A.1.4.1b—Distribution Factor for Shear, \(g_v \) (LRFD Design 4.6.2.2.3a)

One Lane Loaded LLDF:

\[
g_{v1} = 0.36 + \frac{S}{25} \quad \text{LRFD Design Table 4.6.2.2.3a-1}
\]

\[
= 0.36 + \frac{7.3333}{25}
\]

\[
= 0.653
\]

Two or More Lanes Loaded LLDF:

\[
g_{v2} = 0.20 + \left(\frac{S}{12} \right) - \left(\frac{S}{35} \right)^2 \quad \text{LRFD Design Table 4.6.2.2.3a-1}
\]

\[
= 0.20 + \left(\frac{7.3333}{12} \right) - \left(\frac{7.3333}{35} \right)^2
\]

\[
= 0.767 > g_{v1} = 0.653
\]

So, use \(g_v = 0.767 \)

A1A.1.4.2—Compute Maximum Live Load Effects

A1A.1.4.2a—Maximum Design Live Load (HL-93) Moment at Midspan

The maximum moment effects are estimated to occur with the design live load centered on the span. Calculate moments by statics.

Design Lane Load Moment = \(\frac{wL^2}{8} = \frac{0.640(65 \text{ ft})^2}{8} = 338 \text{ kip-ft at midspan} \)

Design Truck Moment with the middle axle located at midspan:

Design Truck Moment \(= \frac{P_{32}L}{4} + \frac{(P_8 + P_{32})xb}{\ell} \)

\[
= \frac{32 \times 65 \text{ ft}}{4} + \frac{(8 + 32)(32.5 \text{ ft} \times 18.5 \text{ ft})}{65 \text{ ft}}
\]

Design Truck Moment = 890 kip-ft (Governs)

Design Tandem Axles Moment with tandem axles located equidistant from midspan:

Tandem Axles Moment \(= P_{25a} = 25 \times 30.5 \text{ ft} = 762.5 \text{ kip-ft} \)

Dynamic allowance factor, \(IM = 33 \% \) LRFD Design Table 3.6.2.1-1

\[
M_{LL+IM} = 338 + 890 \times 1.33
\]

\[
= 1,521.7 \text{ kip-ft}
\]

A1A.1.4.2b—Maximum Design Live Load Shear at Beam Ends

The maximum shear effects occur with the heaviest axle located to create the maximum end reaction. Calculate shears by statics.
Design Lane Load Shear \[\frac{w\ell}{2} = \frac{0.640 \text{ klf} \times 65 \text{ ft}}{2} = 20.8 \text{kips} \]

Design Truck Shear with the last axle located at support

\[
\text{Design Truck Shear} = P_{32} + P_{32} \left(\frac{\ell - x_{32}}{\ell} \right) + P_{8} \left(\frac{\ell - x_{8}}{\ell} \right)
\]

\[
= 32^k + 32^k \left(\frac{65 \text{ ft} - 14 \text{ ft}}{65 \text{ ft}} \right) + 8^k \left(\frac{65 \text{ ft} - 28 \text{ ft}}{65 \text{ ft}} \right)
\]

Design Truck Shear \(= 61.7 \text{kips} \) (Governs)

Design Tandem Axles shear with one tandem axle located at support

\[
\text{Tandem Axles Shear} = P_{25} + P_{25} \left(\frac{\ell - x_{25}}{\ell} \right) = 25^k + 25^k \left(\frac{65 \text{ ft} - 4 \text{ ft}}{65 \text{ ft}} \right) = 48.5 \text{kips}
\]

Dynamic allowance factor, \(IM = 33 \text{ percent} \)

\[V_{LL + IM} = 20.8 \text{kips} + 61.7 \text{kips} \times 1.33 \]

\[= 102.9 \text{kips} \]

A1A.1.4.2c—Distributed Live Load Moments and Shears

Design Live-Load HL-93:

\[M_{LL + IM} = 1,521.7 \times g_m \]

\[= 1,521.7 \times 0.627 \]

\[= 954.1 \text{ kip-ft} \]

\[V_{LL + IM} = 102.9 \times g_v \]

\[= 102.9 \times 0.767 \]

\[= 78.9 \text{kips} \]

A1A.1.5—Compute Nominal Resistance of Section at Midspan (LRFD Design Appendix D6.1)

Locate Plastic Neutral Axis PNA:

\[t_f = 0.855 \text{ in.} \]

\[b_f = 11.510 \text{ in.} \]

\[t_w = 0.580 \text{ in.} \]

\[d = 33.10 \text{ in.} \]

\[A_g = 38.26 \text{ in.}^2 \]

Cov. PL Area \((PL \frac{5}{8} \text{ in.} \times 10\frac{1}{2} \text{ in.}) A_{PL} = t_{PL} \times b_{PL} = 6.56 \text{ in.}^2 \)

Web Depth:

\[D = 33.10 \text{ in.} - 2 \times (0.855 \text{ in.}) = 31.39 \text{ in.} \]

Treat the bottom flange and the cover plate as one element.
Flange area \(A_{bt} = (11.51)(0.855) + (10.5)(0.625) = 16.404 \text{ in.}^2 \)

\[
\bar{y} = \frac{(11.51)(0.855) + (10.5)(0.625)\left(\frac{0.855 + 0.625}{2}\right)}{(11.51)(0.855) + (10.5)(0.625)}
\]

\(= 0.724 \text{ in. (from top of tension flange to centroid of flange and cover plate)} \)

Plastic Forces

LRFD Design Appendix D6.1

Note the forces in longitudinal reinforcement may be conservatively neglected.

Set \(P_{rb} = P_{rt} = 0.0 \)

\[
P_s = 0.85 f'_c b_{eff} t_s
\]

\(= 0.85 \times 3.00 \times 88 \times 7.25 \)

\(= 1,626.9 \text{ kips} \)

\[
c_{rb} = \frac{5.25}{t_s}
\]

where \(c_{rb} \) is the distance from the top of the concrete slab to the center of the bottom layer of the longitudinal concrete deck reinforcement and \(t_s \) is the thickness of the concrete deck. Assume cover + 1/2 bar diameter = 2 in., then \(c_{rb} \) equals 5.25 in.

\[
P_c = F_y A_c \text{ where } A_c = b d_t
\]

\(= 36 \times 11.51 \times 0.855 \)

\(= 354.3 \text{ kips} \)

\[
P_w = F_y D t_w
\]

\(= 36 \times 31.39 \times 0.58 \)

\(= 655.4 \text{ kips} \)

\[
P_t = F_y A_t \text{ where } F_y (b d_t + A_{pl})
\]

\(= 36(11.51 \times 0.855 + 6.56) \)

\(= 590.4 \text{ kips} \)

\[
P_t + P_w + P_c = 590.4 + 655.4 + 354.3 = 1,600.1 \text{ kips} < 1,626.9 \text{ kips}
\]

This means the PNA is within the slab.

\[
\frac{c_{rb}}{t_s} P_s + P_{rb} + P_{rt} = \frac{5.25}{7.25} - 1,626.9 + 0.0 + 0.0 \text{ kips} = 1,178.1 \text{ kips} < 1,600.1 \text{ kips}
\]

This means the PNA is below the bottom layer of deck rebars.

The PNA lies in the slab; only a portion of the slab (depth = \(\bar{y} \)) is required to balance the plastic forces in the steel beam.

\[
\bar{y} = (t_s) \left[\frac{P_t + P_w + P_c - P_{rb}}{P_s} \right]
\]

\[
\bar{y} = (7.25) \frac{1,600.1}{1,626.9} = 0.98 \text{ in.}
\]
\(Y = 7.13 \text{ in. from the top of the concrete deck slab} \)

\(A1A.1.5.1 - \text{Classify Section (LRFD Design 6.10.7 and Figure C6.4.5-1)} \)

Following the I-Sections in Positive Flexure Flowchart

(Section is considered to be Constant Depth)

\(A1A.1.5.1a - \text{Check Web Slenderness (LRFD Design 6.10.6.2.2)} \)

Since PNA is in the slab, the web slenderness requirement is automatically satisfied.

For composite sections in positive bending, the remaining stability criteria are automatically satisfied. The section is compact.

\(A1A.1.5.1b - \text{Check Ductility Requirement (LRFD Design 6.10.7.1.2)} \)

\[D_p = Y = 7.13 \text{ in.} \]

\[D_i = \text{Depth of Composite Section} \]

\[= d + t_{\text{cover plate}} + t_s = 33.10 + 0.625 + 7.25 \]

\[= 40.975 \text{ in.} \]

If \(D_p \leq 0.1D_i \), then \(M_n = M_p \)

Otherwise, \(M_n = M_p \left(1.07 - 0.7\frac{D_p}{D_i} \right) \)

\[0.1D_i = 0.1 \times 40.975 = 4.098 \text{ in.} \]

\[D_p = 7.13 \text{ in.} > 0.1D_i = 4.098 \text{ in.} \text{ therefore } M_n < M_p \]

\(A1A.1.5.2 - \text{Plastic Moment, } M_p \)

Moment arms about the PNA:

Compression Flange:

\(d_c = \left(t_s - Y \right) + \frac{t_c}{2} \)

\[= (7.25 - 7.13) + \frac{0.855}{2} \]

\[= 0.55 \text{ in.} \]

\[d_w = \left(t_s - Y \right) + t_c + \frac{D}{2} \]

\[= (7.25 - 7.13) + 0.855 + \frac{31.39}{2} \]

\[= 16.670 \text{ in.} \]

Tension Flange with cover plate:

\[d_t = \left(t_s - Y \right) + t_c + D + \frac{t_s}{2} \]

\[= (7.25 - 7.13) + 0.855 + 31.39 + 0.724 \]

\[= 33.089 \text{ in.} \]

(0.724 in. is the distance to the centroid of the bottom flange and cover plate from the top of the flange)

The plastic moment, \(M_p \), is the sum of the moments of the plastic forces about the PNA.
APPENDIX A: ILLUSTRATIVE EXAMPLES

\[M_p = \left(\frac{27.13}{2} \right) \left[P_{\alpha}d_{\alpha} + P_{\beta}d_{\beta} + P_{\gamma}d_{\gamma} + P_{\delta}d_{\delta} \right] \]

LRFD Design Table D6.1-1

\[= \left(\frac{7.13^2 \times 1626.9}{2 \times 7.25} \right) + \left[0 + 0 + 354.3 \times 0.5475 + 655.4 \times 16.670 + 590.4 \times 33.089 \right] \]

\[= 36,359.1 \text{ kip-in. or } 3,030.0 \text{ kip-ft} \]

Therefore, \(D_p \neq 0.1D_t \)

LRFD Design Eq. 6.10.7.1.2-1

Therefore, \(M_n = M_p \left(1.07 - 0.7 \frac{D_p}{D_t} \right) \)

LRFD Design Eq. 6.10.7.1.2-2

\[= 3,030 \times \left(1.07 - 0.7 \frac{7.13}{40.975} \right) \]

\[= 2,873.0 \text{ kip-ft} \]

A1A.1.5.3—Nominal Shear Resistance, \(V_n \) (LRFD Design 6.10.9.2)

\(W33 \times 130 \) Rolled section, no stiffeners.

\(D = d - 2t_f \) (Clear distance between flanges)

\[= 33.1 - 2 \times 0.855 \]

\[= 31.39 \text{ in.} \]

\(t_w = 0.580 \text{ in.} \)

\(F_{yw} = 36.00 \text{ ksi} \)

Unstiffened web and therefore,

The shear buckling coefficient, \(k = 5.00 \)

LRFD Design 6.10.9.2

\[\frac{D}{t_w} = 54.10 \]

\[1.12 \sqrt{\frac{E_k}{F_{yw}}} = 1.12 \sqrt{\frac{29,000 \times 5.00}{36.0}} = 71.08 \]

LRFD Design Eq. 6.10.9.3.2-4

So, \(\frac{D}{t_w} \leq 1.12 \sqrt{\frac{E_k}{F_{yw}}} \) and therefore \(C = 1.00 \)

Shear Capacity \(V_n = V_r = CV_p \)

LRFD Design Eq. 6.10.9.2-1

\(V_p = 0.58F_{yw}D_{tw} \)

LRFD Design Eq. 6.10.9.2-2

\(V_p = 0.58 \times 36.0 \times 31.39 \times 0.580 \)

\[= 380.15 \text{ kip} \]
Shear Capacity at the End panel
\[CV_r = 1.00 \times 380.15 = 380.15 \text{ kip} \]

A1A.1.5.4—Demand Summary for Interior Stringer

Table A1A.1.5.4-1

<table>
<thead>
<tr>
<th></th>
<th>Dead Load DC_1</th>
<th>Dead Load DC_2</th>
<th>Live Load Distribution Factor</th>
<th>Dist. Live Load + Impact</th>
<th>Nominal Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment, kip-ft</td>
<td>439.90</td>
<td>129.40</td>
<td>0.627</td>
<td>954.10</td>
<td>2,873.0</td>
</tr>
<tr>
<td>Shear, kips</td>
<td>27.10</td>
<td>8.0</td>
<td>0.767</td>
<td>78.90</td>
<td>380.15</td>
</tr>
</tbody>
</table>

A1A.1.6—General Load-Rating Equation

\[
RF = \frac{C - (\gamma_{DC})(DC) - (\gamma_{DW})(DW) \pm (\gamma_P)(P)}{(\gamma_L)(LL + IM)} \quad \text{Eq. 6A.4.1-1}
\]

A1A.1.7—Evaluation Factors (for Strength Limit States)

1. Resistance Factor, φ
 \[\varphi = 1.00 \text{ for flexure and shear} \]

2. Condition Factor, φ_c
 \[\varphi_c = 1.00 \quad \text{Member is in good condition. NBI Item 59 = 7.} \]

3. System Factor, φ_s
 \[\varphi_s = 1.00 \quad \text{4-girder bridge, spacing > 4 ft (for flexure and shear).} \]

A1A.1.8—Design Load Rating (6A.4.3)

A1A.1.8.1—Strength I Limit State (6A.6.4.1)

Capacity $C = (\varphi)(\varphi_c)(\varphi_s)R_n$

\[
RF = \frac{(\varphi_c)(\varphi_s)(\varphi)(\varphi_s)R_n - (\gamma_{DC})(DC) - (\gamma_{DW})(DW)}{(\gamma_L)(LL + IM)}
\]

A1A.1.8.1a—Inventory Level

<table>
<thead>
<tr>
<th>Load Factors</th>
<th>Table 6A.4.2.2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{DC}</td>
<td>1.25</td>
</tr>
<tr>
<td>γ_{DW}</td>
<td>1.50</td>
</tr>
<tr>
<td>γ_{LL}</td>
<td>1.75</td>
</tr>
</tbody>
</table>

The dead load demands established for load cases DC_1 and DC_2 are permanent loads and therefore the load factor for these loads will be taken from the load case DC.

Flexure: \[
RF = \frac{1.00(1.0)(1.0)(2,873.0) - (1.25)(439.9+129.4)}{(1.75)(954.10)}
\]

\[= 1.29754 \]

© 2020 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
Note: The general rule for simple spans carrying moving concentrated loads states: the maximum bending moment produced by moving concentrated loads occurs under one of the loads when that load is as far from one support as the center of gravity of all the moving loads on the beam is from the other support. In a refined analysis with the HL-93 truck located in such a manner, the resulting rating factor for flexure is $RF = 1.2922$ for this stringer. It should be understood that locating the precise critical section and load position for rating depends on the combined influence of dead load, live load, member capacity, and load factors that make up the general rating factor equation.

Shear: $RF = \frac{(1.0)(1.0)(1.0)(360.15) - (1.25)(27.1 + 8.0)}{(1.75)(78.9)}$

$= 2.435$

A1A.1.8.1b—Operating Level

<table>
<thead>
<tr>
<th>Load</th>
<th>Load Factor γ</th>
<th>Table 6A.4.2.2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>1.35</td>
<td></td>
</tr>
</tbody>
</table>

For Strength I Operating Level, only the live-load factor changes; therefore, the rating factor can be calculated by direct proportions.

Flexure: $RF = 1.294 \times \frac{1.75}{1.35}$

$= 1.677$

Shear: $RF = 2.435 \times \frac{1.75}{1.35}$

$= 3.156$

A1A.1.8.2—Service II Limit State (6A.6.4.1)

Capacity $C = f_R$

$RF = \frac{f_R - (\gamma_{DC})(f_{DC}) - (\gamma_{DW})(f_{DW}) \pm (\gamma_{P})(f_P)}{(\gamma_{LL})(f_{LL+IM})}$

Eq. 6A.6.4.2.1-1

For this example, the terms:

$(\gamma_{DW})(f_{DW}) \pm (\gamma_{P})(f_P)$

do not contribute and the general equation reduces to:

$RF = \frac{f_R - (\gamma_{DC})(f_{DC})}{(\gamma_{LL})(f_{LL+IM})}$

A1A.1.8.2a—Inventory Level

Allowable Flange Stress for tension flange $f_R = 0.95R_nF_{sy}$ ($f_t = 0$) LRFD Design Eq. 6.10.4.2.2-2

Checking the tension flange as compression flanges typically do not govern for composite sections.

$R_n = 1.0$ for non-hybrid sections LRFD Design 6.10.1.10.1

$f_R = 0.95 \times 1.0 \times 36$

\[f_{DC} = f_{DC_1} + f_{DC_2} \]

\[f_{DC} = \frac{M_{DC1}}{S_b} + \frac{M_{DC2}}{S_{b3n}} \]

\[= \frac{439.9 \times 12}{563.8} + \frac{129.4 \times 12}{723.4} \]

\[= 9.363 + 2.147 = 11.510 \text{ ksi} \]

\[f_{LL+IM} = \frac{M_{LL+IM}}{S_{b3n}} \]

\[f_{LL + IM} = \frac{954.1 \times 12}{792.4} = 14.449 \text{ ksi} \]

\[\gamma_{LL} = 1.30 \quad \gamma_{DC} = 1.00 \quad \text{Table 6A.4.2.2-1} \]

\[RF = \frac{34.2 - (1.0)(11.510)}{(1.3)(14.449)} \]

\[= 1.208 \]

A1A.1.8.2b—Operating Level

\[\gamma_{LL} = 1.00 \quad \gamma_{DC} = 1.00 \quad \text{Table 6A.4.2.2-1} \]

For Service II Operating Level, only the live-load factor changes; therefore, the rating factor can be calculated by direct proportions as well.

\[RF = 1.208 \times \frac{1.30}{1.00} \]

\[= 1.570 \]

A1A.1.8.3—Fatigue Limit State (6A.6.4.1)

Determine if the bridge has any fatigue-prone details (Category C or lower).

The transverse welds detail connecting the ends of cover plates to the flange are fatigue-prone details. Use Category E' details because the flange thickness = 0.855 in. is greater than 0.8 in.

If \(2.2(\Delta f)_{tension} > f_{\text{dead-load compression}}\), the detail may be prone to fatigue.

\[f_{\text{dead-load compression}} = 0.0 \text{ at cover plate at all locations because beam is a simple span and cover plate is located in the tension zone} \]

\[\therefore \text{ must consider fatigue; determine if the detail possesses infinite life.} \]

Composite section properties without cover plate:
APPENDIX A: ILLUSTRATIVE EXAMPLES

\[
\bar{y} = \frac{(38.26)(16.55) + \left(\frac{88}{9.2} \times 7.25\right)(36.725)}{(38.26) + \left(\frac{88}{9.2} \times 7.25\right)}
\]

\[
= 29.552 \text{ in. from bottom of section to centroid}
\]

\[
I_x = 6,699 + \left(\frac{88}{9.2}\right)^2 + \frac{(7.25)^3}{12} - \frac{88}{9.2}(7.25)(7.173)^2
\]

\[
= 17,038.8 \text{ in.}^4
\]

\[
S_b = \frac{17,038.8}{29.552} = 576.57 \text{ in.}^3 \text{ Section Modulus at bottom of steel}
\]

Live Load at Cover Plate Cut-Off (13.5 ft. from centerline of bearing)

Fatigue Load: Design truck with a spacing of 30 ft between 32 kip axles.

Influence line ordinates for moment at 13.5 ft from support

\[
M_{LL} = (32 \text{ kips}) (10.696 \text{ ft}) + (32 \text{ kips}) (4.465 \text{ ft}) + (8 \text{ kips}) (1.558 \text{ ft})
\]

\[
= 497.62 \text{ kip-ft} = 5,971.0 \text{ kip-in.}
\]

\[
IM = 15 \text{ percent}
\]

Using influence lines.

\[
M_{LL} + IM = (1.15)(5,971) = 6,866.7 \text{ kip-in.}
\]

LRFD Design 3.6.1.4.3b

The single-lane distribution factor will be used for fatigue.

LRFD Design 3.6.1.1.2

Remove multiple presence factor from the single-lane distribution.

LRFD Design C3.6.1.1.2

\[
g_{Fatigue} = \frac{g_{ml}}{1.20}
\]

\[
= \frac{0.460}{1.20}
\]

\[
= 0.383
\]

Distributed Live-Load Moment:

\[
gM_{LL + IM} = (0.383)(6866.7)
\]

\[
= 2,629.9 \text{ kip-in.}
\]

Fatigue Load Stress Range:

\[
\Delta f_{LL + IM} = \frac{2,629.9}{576.57}
\]

\[
= 4.561 \text{ ksi at the cover plate weld}
\]
Nominal fatigue resistance for infinite life:

\[(\Delta F)_{TH} = 2.60 \text{ ksi for Detail Category E'}\]

Infinite-Life Fatigue Check:

\[(ADTT_{\text{present}}) = 700\]

\[\text{Span Length (L)} = 65.00 \text{ ft}\]

\[\text{Number of lanes } (n_L) = 2\]

\[R_p = 0.988 + 6.87 \times 10^{-5} \text{ Span Length} + 4.01 \times 10^{-6} (ADTT)_{\text{present}} + \frac{0.0107}{\text{Number of lanes}}\]

\[= 0.988 + 6.87 \times 10^{-5} \times 65 + 4.01 \times 10^{-6} \times 700 + 0.0107/2\]

\[= 1.00062\]

\[(\Delta f)_{\text{max}} = (R_p)(\Delta f_{\text{FATIGUE-I}}) = (1.00)(1.75)(4.56)\]

\[= 1.00062 \times 1.75 \times 4.561\]

\[= 7.987 \text{ ksi} > 2.6 \text{ ksi}\]

Fatigue Rating Factor for Infinite Life

\[RF_{\text{infinite}} = \frac{(\Delta F)_{TH}}{(\Delta f)_{\text{max}}} = \frac{2.60}{7.987} = 0.326\]

And, \((\Delta f)_{\text{max}} > (\Delta F)_{TH}\)

Therefore, the detail does not possess infinite fatigue life.

Evaluate the estimated remaining fatigue life using procedures given in Section 7.

Fatigue Rating Factor for Finite Life

\[(\Delta f)_{\text{max}} = R_p \times \Delta f_{\text{FATIGUE-II}}\]

\[= R_p \times Y_{\text{LL-fatigue-II}} \times \Delta f_{\text{LL+IM}}\]

\[= 1.00062 \times 0.80 \times 4.561\]

\[= 3.651 \text{ ksi} > 2.6 \text{ ksi}\]

\[RF_{\text{infinite}} = \frac{(\Delta F)_{TH}}{(\Delta f)_{\text{max}}} = \frac{2.60}{3.651} = 0.712\]

A1A.1.8.3b—Calculation of Finite Fatigue Life

Fatigue life determination will be based upon the finite fatigue life.

\[ADTT \text{ (One Direction)} = 700 \text{ (present value)}\]

\[\text{[ADTTSL]}_{\text{present}} = 0.85(700) = 595\]

Traffic Growth Rate \(g\): 1.0 percent is applied over the life of the bridge (input as 0.010)

Bridge Age \(a\): (2019–1964) = 55 years

Assume Evaluation 1 Life to be used for bridge assessment.

Hence, \(R_p = 1.30\)

Calculate effective stress range:

\[R_p = 1.00062\]

\[R_{sa} = 1.000\]

\[R_{sa} = 1.000\]

\[R_s = R_{sa} \times R_{st} = 1.000\]
\[\Delta f_{\text{eff}} = (R_p)(R_f)(\Delta f_{\text{FATIGUE II}}) = (1.0062)(1.000)(0.80)(4.561) = 3.651 \text{ ksi} \]

\[A = 3.90 \times 10^8 \text{ ksi}^3 \]

\[n = 1.00 \quad \text{simple span girders} \]

Check that there is remaining fatigue life at the present age. Noting that \((ADTT_{SL})_{\text{PRESENT}} \neq (ADTT_{SL})_o\), that is,

\[N_{av} > N_1 \]

\[N_{av} = \frac{R_g A}{(\Delta f_{\text{eff}})^n} = \frac{1.3 \times 3.9 \times 10^8}{3.651^n} = 10,417,718 \text{ cycles} \]

\[N_1 = 365n \left(ADTT_{SL} \right)_{\text{PRESENT}} \left[1 - \frac{(ADTT_{SL})_o}{(ADTT_{SL})_{\text{PRESENT}}} + 1 \right] \left[\left(\frac{(ADTT_{SL})_{\text{PRESENT}}}{(ADTT_{SL})_o} \right)^{1/7} - 1 \right] \]

\[N_1 = 365(1)(595) \left[1 - \frac{200}{595} \right] + 1 = 7,418,583 \text{ cycles} < N_{av}, \text{ OK} \]

Calculate the estimated remaining fatigue life, \(Y_{REM} \), of the fatigue-prone detail as follows:

\[Y_{REM} = \log \left[\frac{N_{av} - N_1}{365n(ADTT_{SL})_{\text{PRESENT}}} + 1 \right] \log(1 + g) \]

\[= \log \left[\frac{0.01}{1 + 0.01} \left(\frac{10,417,718 - N_1}{365 \times 1 + 595} \right) + 1 \right] \log(1 + 0.01) = 12.8 \text{ years} \]

Check the following:

\[(ADTT_{SL})_{\text{FUTURE}} \leq (ADTT_{SL})_{\text{LIMIT}} \]

\[(ADTT_{SL})_{\text{FUTURE}} = (ADTT_{SL})_{\text{FUTURE}} \left(1 + g \right)^{12.8} \]

\[= (595)(1 + 0.01)^{12.8} \]

\[= 676 < (ADTT_{SL})_{\text{LIMIT}} = 1,200 \text{ OK} \]

A1A.1.8.3c—Calculation of Fatigue Serviceability Index

Fatigue Serviceability Index \(Q = \left(\frac{Y - a}{N} \right)^{GRI} \)

No. of load paths (in this case, girders) = 4

\(G = 1.00 \) \hspace{1cm} \text{Table 7.2.6.1-1}

No. of Spans = 1

\(R = 0.90 \) \hspace{1cm} \text{Table 7.2.6.1-2}
\[
Y = a + Y_{REM} = 54 + 12.8 = 66.8 \text{ years}
\]
\[
N = \text{(larger of 100 or } Y) = 100.0
\]

Since this bridge is on an Interstate Highway,

\[
I = 0.9
\]
\[
Q = \left(\frac{66.8 - 54}{100}\right)(1.0)(0.9)(0.9) = 0.1040
\]

Based on the value of the Fatigue Serviceability Index, the bridge owner will need to define the inspection frequency based upon the importance of the structure. Note, however, that the Fatigue Serviceability Index value could be increased if the owner decided to accept a greater risk of fatigue cracking and use an Evaluation 2 Life estimate instead of the Evaluation 1 Life estimate. This is illustrated below for the same example.

Assume that Evaluation 2 Life is used for the bridge fatigue assessment.

Hence, \(R_a = 1.60\)

Calculate effective stress range:
\[
(Af)_{eff} = 3.65 \text{ ksi}
\]
\[
A = 3.90 \times 10^8
\]
\[
n = 1.0 \text{ simple span girders}
\]
\[
N_{av} = \frac{R_a A}{(Af)_{eff}^3} = \frac{1.6 \times 3.9 \times 10^8}{(3.65)^3} = 12,821,803 \text{ cycles}
\]
\[
Y = \log \left[\frac{0.01 + 1.01}{1 + 0.01} \left(\frac{12,821,803 - 7,418,583}{365(1.0)(595)} \right) + 1 \right] = 22.1 \text{ years}
\]

FATIGUE SERVICEABILITY INDEX

Fatigue Serviceability Index \[Q = \left(\frac{Y - a}{N}\right)^{GRI}\]

No. of load paths (in this case, girders) = 4

\[G = 1.00\]

No. of Spans = 1

\[R = 0.90\]

\[N = \text{(larger of 100 or } Y) = 100\]

\[Y = Y_{REM} = 25.2 + 48 = 73.2\]

Assuming that the bridge is on an Interstate Highway, \(I = 0.9\)

\[Q = \left(\frac{76.1 - 54}{100}\right)(1.0)(0.9)(0.9) = 0.179\]

Note that the Fatigue Serviceability Index, \(Q\), has increased from 0.104 to 0.179 as a result of accepting a greater risk of fatigue cracking at the critical detail.

AIA.1.9—Legal Load Rating

Note: The Inventory Design Load Rating produced rating factors greater than 1.0 (with the exception of fatigue). This indicates that the bridge has adequate load capacity to carry all legal loads within LRFD exclusion limits (as stated in LRFD Design Article C3.6.1.2.1) and need not be subject to legal load ratings.

The load rating computations that follow have been done for illustrative purposes. Shear ratings have not been illustrated.
A1A.1.9a—Live Load: AASHTO Legal Loads—“Routine Commercial Traffic”—Type 3, 3S2, 3-3 (rate for all three)

From previous calculations, \(g_m = 0.627 \)
From previous calculations, \(g_v = 0.767 \)

\(IM = 20 \text{ percent} \) Please note that the standard dynamic load allowance of 33 percent is decreased based on a field evaluation verifying that the approach and bridge riding surfaces have only minor surface deviations or depressions.

The following table compares interpolating to determine \(M_{LL} \) without impact for 65 ft span with exact values determined by statics. Note that for the Type 3-3, interpolating \(M_{LL} \) results in a value that is 1.5 percent greater than the true value. Judgement should be exercised whether to interpolate tabulated values.

Since shear demands for simple spans are not listed in the MBE, the shear demands (without impact) are established using statics and listed below.

Table A1A.1.9-1—AASHTO Routine Legal Load Demands for Interior Stringer

<table>
<thead>
<tr>
<th></th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{LL}) interpolated</td>
<td>660.70</td>
<td>707.20</td>
<td>654.40</td>
</tr>
<tr>
<td>(M_{LL}) statics</td>
<td>660.77</td>
<td>707.03</td>
<td>644.68</td>
</tr>
<tr>
<td>(g_m) (M_{LL} + IM)</td>
<td>497.2</td>
<td>532.0</td>
<td>485.1</td>
</tr>
<tr>
<td>(V_{LL}) statics</td>
<td>44.28</td>
<td>51.38</td>
<td>50.58</td>
</tr>
<tr>
<td>(g_v) (M_{LL} + IM)</td>
<td>40.75</td>
<td>47.29</td>
<td>46.55</td>
</tr>
</tbody>
</table>

A1A.1.9b—Live Load: AASHTO Legal Loads—Specialized Hauling Vehicles and Notional Rating Load—SU4, SU5, SU6, SU7, and NRL

Interpolated values are used for the Specialized Hauling Vehicles in this example for illustrative purposes and to familiarize the reader with the Appendix A tables.

The moment demands are established by interpolating demands listed in Table 6A-2; the shear demands are established using statics.

Table A1A.1.9-2—AASHTO Specialized Hauling Vehicles Load Demands for Interior Stringer

<table>
<thead>
<tr>
<th></th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{LL} + IM) interpolated</td>
<td>744.7</td>
<td>821.2</td>
<td>913.5</td>
<td>994.1</td>
<td>1,037</td>
<td>kip-ft</td>
</tr>
<tr>
<td>(g_m) (M_{LL} + IM)</td>
<td>560.3</td>
<td>617.9</td>
<td>687.3</td>
<td>748</td>
<td>780.2</td>
<td>kip-ft</td>
</tr>
<tr>
<td>(V_{LL} + IM) statics</td>
<td>48.65</td>
<td>54.43</td>
<td>58.31</td>
<td>62.04</td>
<td>63.01</td>
<td>kip</td>
</tr>
<tr>
<td>(g_v) (V_{LL} + IM)</td>
<td>44.78</td>
<td>50.10</td>
<td>53.67</td>
<td>57.10</td>
<td>57.99</td>
<td>kip</td>
</tr>
</tbody>
</table>

A1A.1.9.1—Strength I Limit State

For Types 3, 3S2, and 3-3

Dead Load \(DC \): \(\gamma_{DC} = 1.25 \)

\(ADTT \) (One Direction) = 700

Generalized Live-Load Factor for Legal Loads, \(\gamma_{LL} = 1.30 \)
Flexure:
\[RF = \frac{(1.0)(1.0)(1.0)(2,873.0) - (1.25)(439.9 + 129.4)}{(1.30)(M_{LL+IM})} \]

Shear:
\[RF = \frac{(1.0)(1.0)(380.15) - (1.25)(27.1 + 8.0)}{(1.30)(V_{LL+IM})} \]

Table A1A.1.9.1-1—(Strength I) Rating Factors for AASHTO SHV Vehicles

<table>
<thead>
<tr>
<th></th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF (Flexure)</td>
<td>2.967</td>
<td>2.691</td>
<td>2.419</td>
<td>2.223</td>
<td>2.131</td>
</tr>
<tr>
<td>RF (Shear)</td>
<td>5.777</td>
<td>5.163</td>
<td>4.820</td>
<td>4.530</td>
<td>4.461</td>
</tr>
</tbody>
</table>

6A.6.4.2.2

For Types 3, 3S2, and 3-3, and for Specialized Hauling Units and NRL

Generalized Live-Load Factor for Legal Loads:
\[\gamma_{LL} = 1.3 \]
\[\gamma_{DC} = 1.0 \]

Dead Load DC:

\[f_r = 34.200 \text{ ksi} \]

\[f_d = f_{DC_1} + f_{DC_2} = 11.510 \text{ ksi} \]

\[f_{LL+IM} = \frac{M_{LL+IM} \times 12}{792.4} \]

\[RF = \frac{34.2 - (1.0)(11.510)}{(1.3)(f_{LL+IM})} \]

Table A1A.1.9.2-1—(Service) Rating Factors for AASHTO Routine Legal Vehicles

<table>
<thead>
<tr>
<th></th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{LL+IM})</td>
<td>7.530</td>
<td>8.057</td>
<td>7.346</td>
</tr>
<tr>
<td>RF (Service II)</td>
<td>2.318</td>
<td>2.166</td>
<td>2.376</td>
</tr>
</tbody>
</table>

Table A1A.1.9.2-2—(Service) Rating Factors for AASHTO SHV Legal Vehicles

<table>
<thead>
<tr>
<th></th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{LL+IM})</td>
<td>8.485</td>
<td>9.357</td>
<td>10.408</td>
<td>11.328</td>
<td>11.815</td>
</tr>
<tr>
<td>RF (Service II)</td>
<td>2.057</td>
<td>1.865</td>
<td>1.677</td>
<td>1.541</td>
<td>1.477</td>
</tr>
</tbody>
</table>

No posting required as \(RF > 1.0 \).

1A.1.9.3—Summary

Safe Load Capacity (tons), \(RT = RF \times W \)

<table>
<thead>
<tr>
<th>Truck</th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (tons)</td>
<td>25</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>RF (Service II—Controls)</td>
<td>2.318</td>
<td>2.166</td>
<td>2.376</td>
</tr>
<tr>
<td>Safe Load Capacity (tons)</td>
<td>58</td>
<td>78</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Truck</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (tons)</td>
<td>27</td>
<td>31</td>
<td>34.75</td>
<td>38.75</td>
<td>40</td>
</tr>
<tr>
<td>RF (Service II—Controls)</td>
<td>2.057</td>
<td>1.865</td>
<td>1.677</td>
<td>1.541</td>
<td>1.477</td>
</tr>
<tr>
<td>Safe Load Capacity (tons)</td>
<td>56</td>
<td>58</td>
<td>58</td>
<td>60</td>
<td>59</td>
</tr>
</tbody>
</table>
The NRL rating demonstrates Article C6A.4.4.2.1b: “Bridges that rate for the NRL loading will have adequate load capacity for all legal Formula B truck configurations up to 80 kips.” Example A1 shows this holding true: NRL RF > 1 and all SU RF > 1, while Example A2 shows when NRL RF < 1, RF for the SUs may or may not be >1 and need to be checked on an individual basis.

A1A.1.10—Permit Load Rating

Permit Type: Special (Single-Trip, Escorted)
Permit Weight: 220 kips
Permit Vehicle: Shown in Figure A1A.1.10-1

ADTT (one direction): 700

Demand from one percent permit truck without impact from live load analysis by computer program:

Maximum \(M_{LL} = 2,115.0 \text{ kip-ft} \)

Maximum \(V_{LL} = 143.5 \text{ kips} \)

A1A.1.10.1—Strength II Limit State

\[\gamma_{LL} = 1.10 \]

Use one-lane distribution factor and divide out the 1.2 multiple presence factor.

\[g_{mt-permit} = \frac{g_{ml}}{1.20} = \frac{0.460}{1.20} = 0.383 \]

\[g_{sl-permit} = \frac{g_{sl}}{1.20} = \frac{0.653}{1.20} = 0.544 \]

\[IM = 20 \text{ percent (no speed control, minor surface deviations)} \]

Distributed Live-Load Effects:

\[M_{LL+IM} = 2,115 \times 0.383 \times 1.2 \]

\[= 972.1 \text{ kip-ft} \]

\[V_{LL+IM} = (143.5) (0.544) (1.20) \]

\[= 94.90 \text{ kips} \]

Flexure: \[RF = \frac{(1.0)(1.0)(1.0)(2,873.0) - (1.25)(439.9 + 129.4)}{(1.10)(972.1)} = 2.021 \]

Shear: \[RF = \frac{(1.0)(1.0)(1.0)(380.15) - (1.25)(27.1 + 8.0)}{(1.10)(94.9)} = 3.221 \]

A1A.1.10.2—Service II Limit State (Optional)

\[RF = \frac{f_s - (\gamma_{DC})(f_{DC})}{\gamma_L (f_{LL+IM})} \]

\[IM = 20 \text{ percent (no speed control, minor surface deviations)} \]

Generalized Live-Load Factor: \(\gamma_L = 1.00 \)
Dead Load DC: \(\gamma_D = 1.00 \)
Live-load effects for the Service II permit rating of vehicles that mix with traffic are calculated using the LRFD distribution analysis methods. This check is based on past practice and does not use the one-lane distribution with permit load factors that have been calibrated for the Strength II permit rating. For escorted permits, a one-lane distribution factor can be used as the permit crosses the bridge with no other vehicles allowed on the bridge at the same time.

\[g_{m-permit} = 0.383 \quad (MPF = 1.2 \text{ has been divided out}) \]

\[M_{LL+IM} = (2,115)(0.383)(1.2) = 972.1 \text{ kip-ft.} = 11,665 \text{ kip-in.} \]

\[f_{LL+IM} = \frac{M_{LL+IM}}{S_b} = \frac{11,665}{792.4} = 14.72 \text{ ksi} \]

\[RF = \frac{34.2 - (1.0)(11.510)}{(1.0)(14.721)} = 1.541 \]

Figure A1A.1.10-1—Permit Truck Loading Configuration
A1A.2—Evaluation of an Exterior Stringer

Note: The same given bridge data as for interior stringers applies.

A1A.2.1—Section Properties

A1A.2.1.1—Noncomposite Section Properties

$W \times 33 \times 130$ and $PL \frac{3}{4} \text{in.} \times 10 \frac{1}{2} \text{in.}$

Section properties of rolled shapes are subject to change with changes in rolling practices of the steel industry. Identify steel components from available records, construction date, and field measurements. The section properties for this beam were determined from the *AISC Manual of Steel Construction*, Sixth Edition, printed during the period from July 1963 to March 1967, which is consistent with the “Year Built” date for this bridge.

$W \times 33 \times 130$ Bottom Cover Plate: $PL \frac{3}{4} \text{in.} \times 10 \frac{1}{2} \text{in.}$

$t_f = 0.855 \text{in.}$

$b_f = 11.510 \text{in.}$

$t_w = 0.580 \text{in.}$

$d = 33.10 \text{in.}$

$A_g = 38.26 \text{in.}^2$

$I_g = 6,699 \text{in.}^4$

$A_{PL} = t_{PL} \times b_{PL} = 7.875 \text{in.}^2$

$I_{PL} = 0.37 \text{in.}^4$

Distance to C.G.

$$\bar{y} = \frac{\left(\frac{d}{2} + t_{PL}\right)A_{W33x130} + \left(\frac{t_{PL}}{2}\right) + (t_{PL} \times b_{PL})}{A_{W33x130} + A_{PL}}$$

$$\bar{y} = \frac{(17.300)(38.26) + (0.375)(7.875)}{38.26 + 7.875}$$

$\bar{y} = 14.411 \text{in.}$ from bottom of section to centroid

$I_x = 6.699 + 38.26(2.889)^2 + 0.37 + 7.875(14.036)^2$

$I_x = 8,570.1 \text{in.}^4$

$S_t = \frac{8,570.1}{19.439} = 440.9 \text{in.}^3$

Section modulus at top of steel

$S_b = \frac{8,570.1}{14.411} = 594.7 \text{in.}^3$

Section modulus at bottom of steel

A1A.2.1.2—Composite Section Properties

Effective Flange Width, b_c, may be taken as one-half the distance to the adjacent stringer or girder plus the full overhang width.

Effective Flange Width $b_c = \frac{1}{2}(88 \text{in.}) + 12 \text{in.} = 56.0 \text{in.}$

Modular Ratio, n

$$f'c = 3.00 \text{ksi}$$

$$E_{Deck} = 33,000 \left(w_e \right)^{1.5} \sqrt{f'c}$$

$$= 33,000 \left(0.145 \text{ksi} \right)^{1.5} \sqrt{300 \text{ksi}}$$

$$= 3,155.9 \text{ksi}$$

Then, $n = \frac{E_B}{E_{Deck}} = \frac{29,000}{3,155.9} = 9.2$

© 2020 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
Typical Exterior Stringer:

Short-Term Composite, \(n \):

\[W^{33} \times 130, \text{PL} \frac{3}{4} \text{in.} \times 10^{1/2} \text{in. and Conc.} \ 7^{1/4} \text{in.} \times 56 \text{in.} \]

Effective Flange Width, \(b_e = \frac{56.0}{n} = 6.09 \text{in.} \)

\[
\bar{y} = \frac{(17.30)(38.26) + (0.375)(7.875) + \left(\frac{56}{9}\right)(7.25)(37.475)}{38.26 + 7.875 + \left(\frac{56}{9.2}\right)(7.25)}
\]

\[
\bar{y} = 25.687 \text{ in. from bottom of section to centroid}
\]

\[
I_x = 6,699 + 38.26(8.387)^2 + 0.37 + (7.875)(25.312)^2
\]

\[
+ \left(\frac{56}{9.2}\right)(7.25)^3 + \left(\frac{56}{9.2}\right)(7.25)(11.788)^2
\]

\[
I_x = 20,761.7 \text{ in.}^4
\]

\[
S_t = \frac{20,761.7}{8.163} = 2,543.4 \text{ in.}^3 \text{ Section Modulus at top of steel}
\]

\[
S_b = \frac{20,761.7}{25.81} = 808.3 \text{ in.}^3 \text{ Section Modulus at bottom of steel}
\]

Long-Term Composite, \(3n \):

\[3n = 3 \times 9 = 27 \]

\[W^{33} \times 130, \text{PL} \frac{3}{4} \text{in.} \times 10^{1/2} \text{in. and Conc.} \ 7^{1/4} \text{in.} \times 56 \text{in.} \]

Effective Flange Width, \(b_e = \frac{56/3n}{n} = 2.029 \text{ in.} \)

\[
\bar{y} = \frac{(17.30)(38.26) + (0.375)(7.875) + \left(\frac{56}{27.6}\right) \times 7.25)(37.475)}{38.26 + 7.875 + \left(\frac{56}{27.6}\right) \times 7.25}}
\]

\[
\bar{y} = 19.987 \text{ in. from bottom of section to centroid}
\]

\[
I_x = 6,699 + 38.26(2.687)^2 + 0.37 + (7.875)(19.612)^2
\]

\[
+ \left(\frac{56}{27.6}\right)(7.25)^3 + \left(\frac{56}{27.6}\right)(7.25)(17.488)^2
\]

\[
I_x = 14,567.8 \text{ in.}^4
\]

\[
S_t = \frac{14,567.8}{13.863} = 1,050.8 \text{ in.}^3 \text{ Section Modulus at top of steel}
\]

\[
S_b = \frac{14,567.8}{19.987} = 728.9 \text{ in.}^3 \text{ Section Modulus at bottom of steel}
A1A.2.1.3—Summary of Section Properties at Midspan

A1A.2.1.3a—Steel Section Only

\[S_{\text{TOP}} = 440.9 \text{ in.}^3 \]
\[S_{\text{BOT}} = 594.7 \text{ in.}^3 \]

A1A.2.1.3b—Composite Section—Short Term, \(n = 9.2 \)

\[S_{\text{TOP steel}} = 2,599 \text{ in.}^3 \]
\[S_{\text{BOT}} = 809 \text{ in.}^3 \]

A1A.2.1.3c—Composite Section—Long Term, \(3n = 27.6 \)

\[S_{\text{TOP steel}} = 1,050.8 \text{ in.}^3 \]
\[S_{\text{BOT}} = 728.9 \text{ in.}^3 \]

A1A.2.2—Dead Load Analysis—Exterior Stringer

A1A.2.2.1—Components and Attachments, DC

A1A.2.2.1a—Noncomposite Dead Loads, DC₁

Dead Load Due to Deck: \[
= \left(1 + \frac{7.33}{2}\right)\left(\frac{7.25}{12}\right)(0.150 \text{ kip/ft})
\]
\[= (4.666 \text{ ft})(7.25 \text{ in.}/12) \times (0.150 \text{ kcf}) \]
\[= 0.423 \text{ kip/ft} \]

Stringer: (self-weight) \[= (0.130 \text{ kip/ft}) \times (1.06) \]

(six percent increase for connection)
\[= 0.138 \text{ kip/ft} \]

Cover Plate (40 ft \times 10.5 in. \times 0.750 in.): \[= (40 \text{ ft})\times(10.5 \text{ in.}/12)\times(0.75 \text{ in.}/12)\times(0.49 \text{ kcf}) \]
\[= 1.0719 \text{ kip} \]

Approx. uniform loading (over 65 ft stringer) = 1.0719 kip
\[= 0.018 \text{ kip/ft} \]

Diaphragms: \[= (3)\times(0.0427 \text{ kip/ft})\times(3.6667 \text{ ft}) \]
\[= 0.4697 \text{ kip} \]

approx. uniform loading (over 65 ft stringer) \[= 0.4697 \text{ kip} \times (1.06)/65 \text{ ft.} \]
\[= 0.008 \text{ kip/ft} \]

So, total dead load \((DC₁)/\text{stringer} = 0.423 + 0.138 + 0.018 + 0.008\)
\[= 0.587 \text{ kip/ft} \]

\[M_{DC₁} = \frac{(0.587)(65)^2}{8} = 310.0 \text{ kip-ft at midspan} \]

\[V_{DC₁} = (0.587)\left(\frac{65}{2}\right) = 19.1 \text{ kips at bearing} \]

A1A.2.2.1b—Composite Dead Loads, DC₂

From interior girder calcs, barrier weight / stringer = 0.245 kip/ft
Dead Load Moment = \(M_{DC2} = \frac{0.245(65)^2}{8} = 129.4 \text{ kip-ft at midspan} \)

Dead Load Shear = \(V_{DC2} = \frac{0.245(65)}{2} = 8.0 \text{ kips at bearing} \)

A1A.2.2.2—Wearing Surface

There is no wearing surface on the bridge.

As a result, \(DW = 0.0 \)

A1A.2.3—Live Load Analysis—Exterior Stringer

A1A.2.3.1—Compute Live Load Distribution Factors (Type (a) cross section)

A1A.2.3.1a—Distribution Factor for Moment, \(g_m \) (LRFD Design Table 4.6.2.2.2d-1)

One Lane Loaded LLDF:

Lever Rule Approach

For one lane loaded, the multiple presence factor, \(m = 1.2 \)

For:

\[
S + d_e = 7.3333 \text{ ft} + 0 \text{ ft} < 8.00 \text{ ft} \quad \text{one wheel acting upon the girder}
\]

\[
g_{m1} = m \left(\frac{S + d_e}{2S} \right) = 1.2 \left(\frac{7.3333 + 0 - 2}{2 \times 7.3333} \right) = 0.436
\]

Two or More Lanes Loaded LLDF:

Since the spacings at the exterior girder bay and interior girder bays are the same, \(S \) will be taken as 7.3333 ft when establishing the LLDF for interior girder.

\[
g_{interior} = 0.075 + \left(\frac{S}{9.5} \right)^{0.6} \left(\frac{S}{L} \right)^{0.2} \left(\frac{K_g}{12.0L(t)} \right)^{0.1}
\]

\[
= 0.075 + \left(\frac{7.3333}{9.5} \right)^{0.6} \left(\frac{7.3333}{L} \right)^{0.2} (0.967)^{0.1}
\]

\[
= 0.627 > g_{ml} = 0.436
\]

\[
g_{m2} = e g_{interior} \quad \text{where} \quad e = 0.77 + \frac{d_e}{9.1} = 0.77 + \frac{0}{9.1} = 0.77 +
\]

\[
g_{m2} = (0.77) (0.627) = 0.483 > g_{ml} = 0.436 \quad \text{So, use} \ g_m = 0.483
\]

A1A.2.3.1b—Distribution Factor for Shear, \(g_v \) (LRFD Design Table 4.6.2.2.3b-1)

One Lane Loaded LLDF:

Lever Rule Approach

\[
g_{v1} = g_{m1} = 0.436
\]

Two or More Lanes Loaded LLDF:

\[
g_{interior} = 0.20 + \left(\frac{S}{12} \right)^2 \left(\frac{S}{35} \right)^2
\]

© 2020 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
\[
= 0.20 + \left(\frac{7.3333}{12} \right) - \left(\frac{7.3333}{35} \right)^2
\]

\[
= 0.767
\]

\[
g_{v_2} = e \times g_{\text{interior}} \quad \text{where} \quad e = 0.60 + \frac{d}{10} = 0.60 + \frac{0}{10} = 0.60
\]

\[
= 0.60 \times 0.767
\]

\[
= 0.460 > g_{v_1} = 0.436
\]

So, use \(g_v = 0.460 \)

A1A.2.3.1c—Special Analysis for Exterior Girders with Diaphragms or Cross-Frames (LRFD Design 4.6.2.2.2d)

Roadway Layout: two 11-ft wide lanes

\[
R = \frac{N_L}{N_b} + \frac{X_{\text{int}} \sum e}{\sum x^2}
\]

\[
g_{\text{special}} = (m)(R)
\]

One Lane Loaded:

\[
R = \frac{1}{4} + \frac{(11)(6)}{11^2 + 3.67^2 + (-3.67)^2 + (-11)^2} = 0.495
\]

\[
g_{\text{special1}} = 1.2(0.495) = 0.595
\]

Two Lanes Loaded:

\[
R = \frac{2}{4} + \frac{(11)[6+(-5)]}{11^2 + 3.66667^2 + (-3.66667)^2 + (-11)^2} = 0.5409
\]

\[
g_{\text{special2}} = 1.0(0.5409) = 0.541
\]

A1A.2.3.1d—Summary of Distribution Factors for the Exterior Girders

Moment, \(g_m \)

<table>
<thead>
<tr>
<th>1 Lane</th>
<th>2 or More Lanes</th>
<th>Special Analysis (1 Lane)</th>
<th>Special Analysis (2 Lanes)</th>
<th>Governs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.436</td>
<td>0.482</td>
<td>0.595</td>
<td>0.541</td>
<td></td>
</tr>
</tbody>
</table>

\(g_m = 0.595 \)

Shear, \(g_v \)

<table>
<thead>
<tr>
<th>1 Lane</th>
<th>2 or More Lanes</th>
<th>Special Analysis (1 Lane)</th>
<th>Special Analysis (2 Lanes)</th>
<th>Governs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.436</td>
<td>0.460</td>
<td>0.595</td>
<td>0.541</td>
<td></td>
</tr>
</tbody>
</table>

\(g_v = 0.595 \)
A1A.2.3.2—Compute Maximum Live Load Effects for HL-93

Same as for interior girder

Midspan: \(M_{LL + IM} = 1,521.7 \text{ kip-ft} \)

Bearing: \(V_{LL + IM} = 102.9 \text{ kips} \)

A1A.2.3.2a—Distributed Live Load Moments and Shears

Design Live Load HL-93

\[
M_{LL + IM} = 1,521.7 \times g_m = (1,521.7) (0.595) = 905.4 \text{ kip-ft}
\]

\[
V_{LL + IM} = 102.9 \text{ kips} \times g_v = (102.9) (0.595) = 61.2 \text{ kips}
\]

A1A.2.4—Compute Nominal Resistance of Section at Midspan

Locate Plastic Neutral Axis, PNA:

\[
d = 33.10 \text{ in.}
\]

\[
t_f = 0.855 \text{ in.}
\]

\[
t_w = 0.580 \text{ in.}
\]

\[
b_f = 11.510 \text{ in.}
\]

\[
A_g = 38.26 \text{ in.}^2
\]

Cover PL Area (10½ in. × ¾ in.) \(A_{PL} = t_{PL} \times b_{PL} = 7.875 \text{ in.}^2 \)

Web Depth \(D = 33.1 \text{ in.} - 2 \times (0.855 \text{ in.}) = 31.39 \text{ in.} \)

Treat the bottom flange and the cover plate as one element.

Flange area \(A_{f} = (11.51) (0.855) + (10.5) (0.75) = 17.716 \text{ in.}^2 \)

\[
t_f = \frac{(11.51)(0.855)(0.855) + (10.5)(0.75)(0.855 + \frac{0.75}{2})}{(11.51)(0.855) + (10.5)(0.75)} = 0.784 \text{ in.} \text{ (from top of tension flange to centroid of flange and cover plate)}
\]
Plastic Forces

Note the forces in longitudinal reinforcement can be conservatively neglected.

Set $P_{th} = P_{rt} = 0$

$P_s = 0.85f'_c b_{eff}$

$= 0.85 \times (3.00) \times (56) \times (7.25)$

$= 1,035.3$ kips

$t_s = 7.25$ in.

$P_c = F_y A_c = F_y b f$

$= (36) \times (11.51) \times (0.855)$

$= 354.3$ kips

$P_w = F_y A_w = F_y D t_w$

$= (36) \times (31.39) \times (0.58)$

$= 655.4$ kips

$P_t = F_y A_t = F_y (b f + A_{PL})$

$= 36 \times (11.51 \times 0.855 + 7.875)$

$= 637.8$ kips

$P_t + P_w < P_c + P_s + P_{th} + P_{rt} \therefore$ Conditions for Case I are not met

$P_t + P_w + P_c \geq P_s + P_{th} + P_{rt} \therefore$ The PNA lies in the top flange (meets the conditions of Case II)

The PNA lies in the top flange; only a portion of the top flange (depth = \overline{Y}) is required to balance the plastic forces in the steel beam.

$$\overline{Y} = \left(\frac{t_c}{2} \right) \left[\frac{P_w + P_t - P_s}{P_c} \right] + 1$$

$$= 0.855 \left(\frac{655.4 + 637.8 - 1,035.3}{354.3} \right) + 1$$

$$= 0.739$$ in. from the top of the top flange

A1A.2.4.1—Classify Section (LRFD Design 6.10.7 and Appendix C6 Figure C6.4.5-1)

Following the I-Sections in Flexure Flowchart (section is considered to be constant depth).

A1A.2.4.1a—Check Web Slenderness

Since PNA is in the top flange, the web slenderness requirement is automatically satisfied. For composite sections in positive bending, the remaining stability criteria are automatically satisfied. The section is compact.

A1A.2.4.1b—Check Ductility Requirement (LRFD Design 6.10.7.1.2)

$$D_p = t_s + \overline{Y} = 7.25 + 0.739 = 7.989$$ in.

$$D_l = d + t_{coverplate} + t_s = 33.10 + 0.75 + 7.25 = 41.100$$ in.

If $D_p \leq 0.1 D_l$, then $M_n = M_p$

Otherwise, $M_n = M_p \left(1.07 - 0.7 \frac{D_p}{D_l} \right)$

© 2020 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
0.1D_t = 0.1 \times 41.100 = 4.110\text{ in.}

D_P = 7.989\text{ in.} > 0.1D_t, \text{ therefore } M_n \text{ will be less than } M_p

**A1A.2.4.2—Plastic Moment, } M_p^\prime

Moment arms about the PNA.

Compression Flange:

\begin{align*}
d_s &= \left(\frac{t_c}{2} + \bar{y} \right) = \left(\frac{7.25}{2} + 0.739 \right) = 4.364\text{ in.} \\
d_w &= D - \frac{t_c}{2} - \bar{y} = \frac{31.39}{2} + 0.855 - 0.739 = 15.811\text{ in.}
\end{align*}

Tension Flange:

\begin{align*}
d_t &= t_c - D + t_t \\
 &= (0.855 - 0.739) + 31.39 + 0.784 \\
 &= 32.290\text{ in.}
\end{align*}

The plastic moment, } M_p^\prime \text{, is the sum of the moments of the plastic forces about the PNA.}

\[
M_p^\prime = \frac{P_c}{2t_c}\left[\left(\frac{t_c - \bar{y}}{2}\right)^2 + (t_c - \bar{y})^2\right] + P_d d_s + P_{ta} d_{ta} + P_{ta} d_{ta} + P_{ta} d_{ta} + P_{ta} d_{ta} + P_{ta} d_{ta}
\]

\[
= \left\{ \frac{354.3}{2(0.855)} \left[(0.739)^2 + (0.855 - 0.739)^2 \right] \right\} \\
+ \left(1035.3 \right) \left(4.364 \right) + 0 + 0 + (655.4)(15.811) + (637.8)(32.29)
\]

\[
= 35,591\text{ kip-in.} = 2,966\text{ kip-ft}
\]

\[
D_P > 0.1D_t
\]

Therefore, } M_n = M_p^\prime \left(1.07 - 0.7 \frac{D_P}{D_t} \right)

\[
= 2,966.0 \left(1.07 - 0.7 \times \frac{7.989}{41.10} \right) \\
= 2,770.0 \text{ kip-ft}
\]

**A1A.2.4.3—Nominal Shear Resistance, } V_n \text{ (LRFD Design 6.10.9.2)}

W33 × 130 Rolled section, no stiffeners.

Classification and Resistance same as for interior stringer

\[
V_n = 380.15\text{ kip}
\]
Table A1A.2.4.4-1

<table>
<thead>
<tr>
<th>Load</th>
<th>Load Factor, γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>1.25</td>
</tr>
<tr>
<td>LL</td>
<td>1.75</td>
</tr>
</tbody>
</table>

A1A.2.5—General Load-Rating Equation

\[
RF = \frac{C - \gamma_{DC}(DC) - \gamma_{DW}(DW)(PM) \pm \gamma_{P}(P)}{(\gamma_{LL})(LL + IM)}
\]

Eq. 6A.4.2.1-1

A1A.2.6—Evaluation Factors (for Strength Limit States)

1. Resistance Factor, φ
 \[\phi = 1.0\] for flexure and shear

2. Condition Factor, \(\varphi_c\)
 Member is in good condition. NBI Item 59 = 7.
 \[\varphi_c = 1.0\]

3. System Factor, \(\varphi_s\)
 \[\varphi_s = 1.0\] 4-girder bridge, spacing > 4 ft (for flexure and shear).

A1A.2.7—Design Load Rating (6A.4.3)

A1A.2.7.1—Strength I Limit State (6A.6.4.1)

\[
RF = \frac{(\varphi_c)(\varphi_s)(\varphi)(R_s - (\gamma_{DC})(DC) - (\gamma_{DW})(DW) + (\gamma_{P})(P))}{(\gamma_{LL})(LL + IM)}
\]

A1A.2.7.1a—Inventory Level

The dead load demands established for load cases \(DC_1\) and \(DC_2\) are permanent loads and therefore the load factor for these loads will be taken from the load case \(DC\).

Flexure:

\[
RF = \frac{(1.0)(1.0)(1.0)(2.770.0) - (1.25)(310.0 + 129.4)}{(1.75)(905.4)}
\]

\[= 1.402\]

Shear:

\[
RF = \frac{(1.0)(1.0)(1.0)(380.15) - (1.25)(19.1 + 8.0)}{(1.75)(61.2)}
\]

\[= 3.233\]
A1A.2.7.1b—Operating Level

<table>
<thead>
<tr>
<th>Load</th>
<th>Load Factor, γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>1.25</td>
</tr>
<tr>
<td>LL</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Table 6A.4.2.2-1

For Strength I Operating Level, only the live-load factor changes; therefore, the rating factor can be calculated by direct proportions.

Flexure:

\[
RF = 1.402 \times \frac{1.75}{1.35} = 1.817
\]

Shear:

\[
RF = 3.233 \times \frac{1.75}{1.35} = 4.191
\]

A1A.2.7.2—Service II Limit State (6A.6.4.1)

Capacity \(C = f_R \)

\[
RF = \frac{f_R - (\gamma_{DC})(f_{DC}) - (\gamma_{DW})(f_{DW}) \pm (\gamma_P)(f_P)}{(\gamma_{LL})(f_{LL+IM})}
\]

For this example, the terms:

\((\gamma_{DW})(f_{DW}) \pm (\gamma_P)(f_P) = 0\)

Therefore:

\[
RF = \frac{f_R - (\gamma_{DC})(f_{DC})}{(\gamma_{LL})(f_{LL+IM})}
\]

A1A.2.7.2a—Inventory Level

Allowable Flange Stress for tension flange:

\[
f_R = 0.95 R_h F_{sf} \quad (f_i = 0)
\]

Checking the tension flange as a compression flange typically does not govern for composite sections.

\[
R_h = 1.00 \text{ for non-hybrid sections}
\]

\[
f_R = 0.95 \times 1.00 \times 36 = 34.200 \text{ ksi}
\]

\[
f_{DC} = f_{DC1} + f_{DC2}
\]

\[
f_{DC} = \frac{M_{DC1}}{S_b} + \frac{M_{DC2}}{S_{num}}
\]
\[f_{DC} = \frac{(310.0)(12)}{594.7} + \frac{(129.4)(12)}{728.9} = 6.255 + 2.130 = 8.385 \text{ ksi} \]

\[f_{LL+IM} = \frac{M_{LL+IM}}{S_{m}} \]

\[f_{LL+IM} = \frac{(905.4)(12)}{808.3} = 13.442 \text{ ksi} \]

\[\gamma_{LL} = 1.30 \quad \gamma_{DC} = 1.00 \]

\[RF = \frac{34.2 - (1.0)(8.386)}{1.3(13.442)} = 1.477 \]

\[A1A.2.7.2b—Operating Level \]

\[\gamma_{LL} = 1.00 \quad \gamma_{DC} = 1.00 \] Table 6A.4.2.2-1

For Service II Operating Level, only the live-load factor changes; therefore, the rating factor can be calculated by direct proportions as well.

\[RF = 1.477 \times \frac{1.30}{1.00} = 1.920 \]

\[A1A.2.7.3—Fatigue Limit State \]

The calculations are not done. See the calculations for interior stringers for guidance.

\[A1A.2.8—Legal Load Rating (6A.6.4.2) \]

Note: The Inventory Design Load Rating produced rating factors greater than 1.0. This indicates that the bridge has adequate load capacity to carry all legal loads within LRFD exclusion limits and need not be subject to legal load ratings. The load rating computations that follow have been done for illustrative purposes.

\[A1A.2.8.1—Live Load Demand \]

\[A1A.2.8.1a—Live Load: AASHTO Legal Loads—Routine Commercial Traffic—Types 3, 3S2, and 3-3 \]

From previous calculations, \(g_m = 0.595 \)

From previous calculations, \(g_v = 0.595 \)

\(IM = 20 \text{ percent} \) Table C6A.4.4.3-1

(Please note that the standard dynamic load allowance of 33 percent is decreased based on a field evaluation verifying that the approach and bridge riding surfaces have only minor surface deviations or depressions.)

Since shear demand for simple spans is not listed in the MBE, both the moment and shear demand (without impact) are established using statics and listed below. Hand Calculations (not shown)
Table A1A.2.8.1a—AASHTO Routine Legal Load Demands for Exterior Stringer

<table>
<thead>
<tr>
<th>Truck</th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{LL} (interpolated)</td>
<td>660.77</td>
<td>707.03</td>
<td>644.68</td>
<td>kip-ft</td>
</tr>
<tr>
<td>$g_{M}M_{LL+IM}$</td>
<td>471.8</td>
<td>504.8</td>
<td>460.3</td>
<td>kip-ft</td>
</tr>
<tr>
<td>V_{LL} (statics)</td>
<td>44.28</td>
<td>51.38</td>
<td>50.58</td>
<td>kip</td>
</tr>
<tr>
<td>$g_{V}V_{LL+IM}$</td>
<td>31.62</td>
<td>36.68</td>
<td>36.12</td>
<td>kip</td>
</tr>
</tbody>
</table>

A1A.2.8.1b—Live Load: AASHTO Legal Loads—Specialized Hauling Vehicles (SHVs) and Notional Rating Load—SU4, SU5, SU6, SU7, and NRL

Interpolated values are used for the Specialized Hauling Vehicles in this example for illustrative purposes and to familiarize the reader with the Appendix A tables.

Table E6A-2 (with 33 percent IM)

The moment demands are established by interpolating demands listed in Table E6A-2 and the shear demands are established using statics.

Table A1A.2.8.1b—AASHTO Specialized Hauling Vehicles Load Demands for Exterior Stringer

<table>
<thead>
<tr>
<th>Truck</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{LL+IM} (interpolated)</td>
<td>744.7</td>
<td>821.2</td>
<td>913.5</td>
<td>994.1</td>
<td>1,037.0</td>
<td>kip-ft</td>
</tr>
<tr>
<td>$g_{M}M_{LL+IM}$</td>
<td>531.7</td>
<td>586.3</td>
<td>652.2</td>
<td>709.8</td>
<td>740.4</td>
<td>kip-ft</td>
</tr>
<tr>
<td>V_{LL+IM} (statics)</td>
<td>48.65</td>
<td>54.43</td>
<td>58.31</td>
<td>62.04</td>
<td>63.01</td>
<td>kip</td>
</tr>
<tr>
<td>$g_{V}M_{LL+IM}$</td>
<td>34.74</td>
<td>38.86</td>
<td>41.63</td>
<td>44.30</td>
<td>44.99</td>
<td>kip</td>
</tr>
</tbody>
</table>

A1A.2.8.2—Strength I Limit State

For Types 3, 3S2, and 3-3

Dead Load DC: $\gamma_{DC} = 1.25$ Table 6A.4.2.2-1

$ADTT$ (one direction) = 700

Generalized Live-Load Factor for Legal Loads:

$\gamma_{LL} = 1.30$ Table 6A.4.4.2.3b-1

Flexure:

$$RF = \frac{(1.0)(1.0)(1.0)(2,770.0)\quad -(1.25)(310.0+129.4)}{(1.30)(M_{LL+IM})}$$

Shear:

$$RF = \frac{(1.0)(1.0)(1.0)(380.15)\quad -(1.25)(19.1+8.0)}{(1.30)(V_{LL+IM})}$$

Table A1A.2.8.2—(Strength I) Rating Factors for AASHTO SHV Vehicles

<table>
<thead>
<tr>
<th>Truck</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF (Flexure)</td>
<td>3.213</td>
<td>2.914</td>
<td>2.619</td>
<td>2.407</td>
<td>2.307</td>
</tr>
<tr>
<td>RF (Shear)</td>
<td>7.667</td>
<td>6.854</td>
<td>6.398</td>
<td>6.013</td>
<td>5.921</td>
</tr>
</tbody>
</table>

A1A.2.8.3—Service II Limit State

For Types 3, 3S2, and 3-3, and for Specialized Hauling Units and NRL

Dead Load DC: $\gamma_{DC} = 1.00$ Table 6A.4.2.2-1

Generalized Live-Load Factor for Legal Loads, $\gamma_{LL} = 1.30$ Table 6A.4.2.2-1

$f_{R} = 34,200$ ksi

$f_{DC} = f_{DC1} + f_{DC2} = 8.385$ ksi

See Calcs A1A.2.7.2a
\[f_{LL+IM} = \frac{M_{LL+IM} \times 12}{808.3} \]
\[RF = \frac{34.2 - (1.0)(8.385)}{(1.3)(f_{LL+IM})} \]

Table A1A.2.8.3-1—(Service) Rating Factors for AASHTO Routine Legal Vehicles

<table>
<thead>
<tr>
<th>Truck</th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{LL+IM})</td>
<td>7.004</td>
<td>7.494</td>
<td>6.834 ksi</td>
</tr>
<tr>
<td>RF (Service II)</td>
<td>2.835</td>
<td>2.650</td>
<td>2.906</td>
</tr>
</tbody>
</table>

Table A1A.2.8.3-2—(Service) Rating Factors for AASHTO SHV Legal Vehicles

<table>
<thead>
<tr>
<th>Truck</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{LL+IM})</td>
<td>7.894</td>
<td>8.704</td>
<td>9.683</td>
<td>10.538</td>
<td>10.992 ksi</td>
</tr>
<tr>
<td>RF (Service II)</td>
<td>2.516</td>
<td>2.281</td>
<td>2.051</td>
<td>1.884</td>
<td>1.807</td>
</tr>
</tbody>
</table>

No posting required as \(RF > 1.0 \) 6A.8.3

A1A.2.8.4—Summary (6A.4.4.4)

Safe Load Capacity (tons), \(RT = RF \times W \) Eq. 6A.4.4.4-1

Table A1A.2.8.4-1—Safe Load Capacity for AASHTO Routine Legal Vehicles

<table>
<thead>
<tr>
<th>Truck</th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (tons)</td>
<td>25</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>RF (Service II—Controls)</td>
<td>2.835</td>
<td>2.650</td>
<td>2.906</td>
</tr>
<tr>
<td>Safe Load Capacity (tons)</td>
<td>71</td>
<td>95</td>
<td>116</td>
</tr>
</tbody>
</table>

Table A1A.2.8.4-2—Safe Load Capacity for AASHTO SHV Legal Vehicles

<table>
<thead>
<tr>
<th>Truck</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (tons)</td>
<td>27</td>
<td>31</td>
<td>34.75</td>
<td>38.75</td>
<td>40</td>
</tr>
<tr>
<td>RF (Service II Controlling)</td>
<td>2.516</td>
<td>2.281</td>
<td>2.051</td>
<td>1.884</td>
<td>1.806</td>
</tr>
<tr>
<td>Safe Load Capacity (tons)</td>
<td>68</td>
<td>71</td>
<td>71</td>
<td>73</td>
<td>72</td>
</tr>
</tbody>
</table>

The NRL rating demonstrates Article C6A.4.4.2.1b: “Bridges that rate for the NRL loading will have adequate load capacity for all legal Formula B truck configurations up to 80 kips.” Example A1 shows this holding true NRL \(RF > 1 \) and all SHV \(RF > 1 \), while Example A2 shows when NRL \(RF < 1 \), RF for the SUs may or may not be > 1 and need to be checked on an individual basis.

A1A.2.9—Permit Load Rating (6A.6.4.2)

Permit Type: Special (Single Trip, Escorted)
Permit Weight: 220 kips
Permit Vehicle: Shown in Figure A1A.1.10-1.

\(ADTT \) (One Direction): 700

Demand from one Permit Truck without impact from Live-Load Analysis by Computer Program:
Maximum \(M_{LL} = 2,115.0 \) kip-ft
Maximum \(V_{LL} = 145.3 \) kips
A1A.2.9.1—Strength II Limit State

\[\gamma_{LL} = 1.10 \]

Use the one-lane distribution factor and divide out the 1.2 multiple presence factor.

\[g_{m-\text{Permit}} = \frac{g_{ml}}{1.20} = \frac{0.595}{1.20} = 0.496 \]

\[g_{v-\text{Permit}} = \frac{g_{vl}}{1.20} = \frac{0.595}{1.20} = 0.496 \]

\[IM = 20 \text{ percent (no speed control, minor surface deviations)} \]

Distributed Live-Load Effects:

\[M_{LL+IM} = (2,115.0)(0.496)(1.2) \]

\[= 1,258.8 \text{ kip-ft} \]

\[V_{LL+IM} = (145.3)(0.496)(1.2) \]

\[= 86.50 \text{ kips} \]

Flexure:

\[RF = \frac{(1.0)(1.0)(1.0)(2,770.0) - (1.25)(310.0 + 129.4)}{(1.10)(1,258.8)} \]

\[= 1.604 \]

Shear:

\[RF = \frac{(1.0)(1.0)(1.0)(380.15) - (1.25)(19.1 + 8.0)}{(1.10)(86.50)} \]

\[= 3.639 \]

A1A.2.9.2—Service II Limit State (Optional)

Dead Load DC:

\[\gamma_{DC} = 1.00 \]

Generalized Live-Load Factor, \(\gamma_{LL} \):

\[IM = 20 \text{ percent (no speed control, minor deviations)} \]

\[f_{R} = 34.200 \text{ ksi} \]

\[f_{D} = 8.385 \text{ ksi} \]

Live-load effects for the Service II permit rating of an escorted permit are calculated using the same one-lane-loaded procedures as for the Strength II rating.

\[g_{m-\text{Permit}} = 0.496 \text{ (MPF 1.2 has already been divided out)} \]

\[M_{LL+IM} = (2,115.0)(0.496)(1.2) = 1,258.8 \text{ kip-ft} \]

\[= 15,106 \text{ kip-in.} \]

\[f_{LL+IM} = \frac{M_{LL+IM}}{S_b} = \frac{15,106}{808.3} = 18.688 \text{ ksi} \]

\[RF = \frac{34.2(1.0)(8.385)}{1.0(18.688)} = 1.381 \]
Table A1A.3-1—Summary of Rating Factors for Load and Resistance Factor Rating Method—Interior Stringer

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Design Load Rating</th>
<th>Legal Load Rating</th>
<th>Permit Load Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory</td>
<td>Operating</td>
<td>Type 3</td>
</tr>
<tr>
<td>Strength I</td>
<td>Flexure</td>
<td>1.294</td>
<td>1.677</td>
</tr>
<tr>
<td>Strength II</td>
<td>Flexure</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Service II</td>
<td>Strength I</td>
<td>1.208</td>
<td>1.570</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Strength I</td>
<td>0.326</td>
<td>—</td>
</tr>
</tbody>
</table>

NP—Calculations are not performed

Table A1A.3-2—Summary of Rating Factors for Load and Resistance Factor Rating Method—Exterior Stringer

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Design Load Rating</th>
<th>Legal Load Rating</th>
<th>Permit Load Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory</td>
<td>Operating</td>
<td>Type 3</td>
</tr>
<tr>
<td>Strength II</td>
<td>Flexure</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Service II</td>
<td>Strength I</td>
<td>1.477</td>
<td>1.920</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Strength I</td>
<td>NP</td>
<td>—</td>
</tr>
</tbody>
</table>

NP—Calculations are not performed
This page intentionally left blank.
PART B—ALLOWABLE STRESS AND LOAD FACTOR RATING METHODS

A1B.1—EVALUATION OF AN INTERIOR STRINGER

A1B.1.1—Bridge Data

Refer to Article A1A.1.1, Simple Span Composite Steel Stringer Bridge Data.

A1B.1.2—Section Properties

In unshored construction, the steel stringer must support its own weight plus the weight of the concrete slab. For the composite section, the concrete is transformed into an equivalent area of steel by dividing the area of the slab by the modular ratio. Live load plus impact stresses are carried by the composite section using a modular ratio of n. To account for the effect of creep, superimposed dead load stresses are carried by the composite section using a modular ratio of $3n$ (AASHTO 10.38.1). The as-built section properties are used in this analysis.

A1B.1.2.1—Noncomposite Section Properties

Section properties of rolled shapes are subject to change with changes in rolling practices of the steel industry. Identify steel components from available records, construction date, and field measurements. The section properties for this beam were determined from the AISC Manual of Steel Construction, Sixth Edition, printed during the period from July 1963 to March 1967, which is consistent with the “Year Built” date for this bridge.

Shape—W33×130

Bottom Cover Plate $5/8$ in. × $10 1/2$ in.

$t_f = 0.855$ in.

$b_f = 11.510$ in.

$t_w = 0.580$ in.

$d = 33.10$ in.

$A_g = 38.26$ in.2

$I_g = 6,699$ in.4

$t_{PL} = 0.625$ in.

$b_{PL} = 10.500$ in.

$A_{PL} = t_{PL} \times b_{PL} = 6.56$ in.2

$I_{PL} = 0.21$ in.4

Figure A1B.1.2.1-1—Cross Section—Interior Stringer, Noncomposite
Distance to C.G. = $\bar{y} = \frac{d \left(\frac{d}{2} + t_{PL} \right) A_{W33×130} + (t_{PL}^2 + t_{PL} \times b_{PL})}{A_{W33×130} + A_{PL}}$

$\bar{y} = \frac{(17.175)(38.26) + (0.313)(6.56)}{38.26 + 6.56}$

$\bar{y} = 14.707$ in. from bottom of section to centroid

$I_x = 6,699 + 38.26(2.468)^2 + 0.21 + 6.56(14.395)^2$

$I_x = 8,291.5$ in.2

$S_t = \frac{8,291.5}{19.018} = 436.0$ in.3 Section Modulus at top of steel

$S_b = \frac{8,291.5}{14.707} = 563.8$ in.3 Section Modulus at bottom of steel

A1B 1.2.2—Composite Section Properties

Effective Flange Width, b_e

Smaller of $\frac{1}{4}d(65)(12) = 195$ in.

$= (7.3333)(12) = 88.0$ in.

$= (7.250)(12) = 87.0$ in. (Controls)

$b_e = 87.0$ in.

Modular Ratio n

$f_c' = 3.00$ ksi

for $f_c' = 3,000$ psi $- n = 9.0$

Typical Interior Stringer:

Short-Term Composite, (n):

W33×130, PL $\frac{5}{8}$ in. × 10 $\frac{1}{2}$ in. and Conc. 7 $\frac{1}{4}$ in. × 87 in.

Effective Flange Width, $b_e = 87/n = 9.67$ in
Figure A1B.1.2.2-1—Cross Section—Interior Stringer, Composite $n = n$

\[
\bar{y} = \frac{(17.175)(38.26) + (0.313)(6.56) + \left(\frac{87}{9} \times 7.25\right)(37.35)}{38.26 + 6.56 + \left(\frac{87}{9} \times 7.25\right)}
\]

\[
\bar{y} = 28.518 \text{ in. from bottom of section to centroid}
\]

\[
I_x = 6.699 + (38.26)(11.343)^2 + 0.21 + 6.56(28.2055)^2 + \frac{\left(\frac{87}{9} \times 7.25\right)^3}{12} + \frac{\left(\frac{87}{9} \times 7.25\right)(8.832)^2}{12}
\]

\[
I_x = 22,614.5 \text{ in.}^4
\]

Note: I_x for the bottom cover plate is negligible, however, its $A d^2$ term makes a significant contribution.

\[
S_{tn} = \frac{22,614.5}{5.207} = 4,343.1 \text{ in.}^3 \text{ Section modulus at top of steel}
\]

\[
S_{bn} = \frac{22,614.5}{28.518} = 793.0 \text{ in.}^3 \text{ Section modulus at bottom of steel}
\]

Use with Live Load.

Long-Term Composite, 3n:

$W \times 33 \times 130, PL \times \frac{5}{8} \text{ in.} \times 10^{1/2} \text{ in. and Conc. } 7^{1/4} \text{ in.} \times 87 \text{ in.}$

Effective Flange Width, $b_e = \frac{87}{3n} = 3.22 \text{ in.}$
Figure A1B.1.2.2-2—Cross Section—Interior Stringer, Composite $n = 3n$

$$
\bar{y} = \frac{(17.175)(38.26) + (0.313)(6.56) + \left(\frac{87}{27}\times 7.25\right)(37.35)}{38.26 + 6.56 + \left(\frac{87}{27}\times 7.25\right)}
$$

$$
\bar{y} = 22.465 \text{ in. from bottom of section to centroid}
$$

$$
I_x = 6,699 + (38.26)(5.290)^2 + 0.21(6.56)(22.1525)^2 + \frac{\left(\frac{87}{27}\times 7.25\right)(7.25)^3}{12} + \left(\frac{87}{27}\times 7.25\right)(14.885)^2
$$

$$
I_x = 16,267.4 \text{ in.}^4
$$

$$
S_{x3n} = \frac{16,267.4}{11.260} = 1,444.7 \text{ in.}^3 \text{ Section Modulus at top of steel}
$$

$$
S_b = \frac{16,267.4}{22.465} = 724.1 \text{ in.}^3 \text{ Section Modulus at bottom of steel}
$$

Use with Superimposed Dead Load (SDL).

A1B.1.3—Dead Load Analysis—Interior Stringer

A1B.1.3.1—Dead Loads (Includes an Allowance of Six Percent of Steel Weight for Connections)

1. Dead load due to Deck

 $$(7.3333 \text{ ft}) (7.25 \text{ in/12}) \times (150 \text{ pcf}) = 664.6 \text{ lbs/ft}$$

2. Stringer (self-weight)

 $$(130 \text{ lbs/ft}) \times (1.06) = 137.8 \text{ lbs/ft}$$
 (six percent increase for connection)

3. Cover Plate (38 ft x 10.5 in x 0.625 in)

 $$(38 \text{ ft} \times (10.5 \text{ in/12}) \times (0.625 \text{ in/12}) \times (490 \text{ pcf}) = 848.6 \text{ lbs/ft}$$

 approx. uniform loading (over 65 ft stringer) $= (848.6 \text{ lbs/ft}) \times (1.06)/(65 \text{ ft})$
4. Diaphragms

\[\text{approx. uniform loading (over 65 ft stringer)} = (939.4 \text{ lbs}) \times (1.06)/(65 \text{ ft}) \]

\[= 15.4 \text{ lbs/ft} \]

So, Total dead load \((DC_1) / \text{Stringer} \)

\[= 664.6 + 137.8 + 13.9 + 15.4 \]

\[= 831.7 \text{ lbs/ft} \]

A1B.1.3.2—Superimposed Dead Loads (AASHTO 3.23.2.3.1.1)

1. Barrier Weight

Curb

\[= (1 \text{ ft}) \times (10 \text{ in./12}) \times (150 \text{ pcf}) \]

\[= 62.5 \text{ lbs/ft} \]

Parapet

\[= \left[(6 \text{ in.} \times 19 \text{ in.}) + (18 \text{ in.} \times 12 \text{ in.}) \right]/144 \times (150 \text{ pcf}) \]

\[= 171.9 \text{ lbs/ft} \]

Railing

\[= \text{Assume 20 lbs/ft} \]

\[= 10.0 \text{ lbs/ft} \]

2. Wearing Surface

\[= 0.0 \text{ lbs/ft} \]

So, total barrier weight / stringer

\[= 62.5 + 171.9 + 10.0 + 0.0 \]

\[= 244.4 \text{ lbs/ft} \]

A1B.1.4—Live Load Analysis—Interior Stringer

Moments:

\[w_{\text{SDL}} = 0.2444 \text{ kip/ft.} \]

\[w_{\text{DL}} = 0.8317 \text{ kip/ft.} \]

Figure A1B.1.4-1—Load Diagram—Interior Stringer, Dead Load, and Superimposed Dead Load

Dead Load Moment, \(M_{DL} = \frac{0.8317(65)^2}{8} = 439.2 \text{ kip-ft at midspan} \)

Dead Load Moment, \(M_{SDL} = \frac{0.2444(65)^2}{8} = 129.1 \text{ kip-ft at midspan} \)

\[M_{LL} = \frac{403.3 + 492.8}{2} \]

\[\Leftarrow 65 \text{ ft} \]

\[70 \]

\[492.8 \]

\[M_{LL} = 448 \text{ kip-ft} \]

(without impact and without LL Distribution)
Note the moments given in the MBE are for one line of wheels. The values given in AASHTO are for the entire axle and are therefore twice the MBE value.

Maximum M_{LL} without impact for 65 ft span, with exact values determined by statics, is 448.02 kip-ft. Nevertheless, judgment should be exercised whether to interpolate tabulated values. The general rule for simple spans carrying moving concentrated loads states that the maximum bending moment produced by moving concentrated loads occurs under one of the loads when that load is as far from one support as the center of gravity of all the moving loads on the beam is from the other support. It should be understood that locating the precise critical section and load position for rating depends on the combined influence of dead load, live load, and member capacity that make up the general Rating Factor equation.

A1B.1.5—Allowable Stress Rating (6B.3.1, 6B.4.2, and 6B.5.2)

Consider Maximum Moment Section only for this example.

A1B.1.5.1—Impact (Use Standard AASHTO) (6B.6.4, AASHTO 3.8.2.1)

\[
I = \frac{50}{L + 125} \leq 0.3
\]

\[
I = \frac{50}{65 + 125} = 0.26
\]

A1B.1.5.2—Distribution (Use Standard AASHTO) (6B.6.3, AASHTO 3.23.2.2, and Table 3.23.1)

Since this bridge carries two or more lanes,

\[
DF = \frac{S_s}{5.5} = \frac{7.33333}{5.5} = 1.3333
\]

\[
M_{LL+I} = M_{LL}(1 + I) \times DF = 448.1(1 + 0.263)(1.3333)
\]

\[
M_{LL+I} = 754.6 \text{ kip-ft}
\]

A1B.1.5.3—Inventory Level (Bottom Tension Controls) (6B.5.2.1, Table 6B.5.2.1-1)

For steel with $F_y = 36 \text{ ksi} \rightarrow f_I = 0.55 f_y$

Thus:

\[
f_I = 0.55(36) = 19.8 \text{ ksi}
\]

The Resisting Capacity (M_{RI}) = $f_I S_{wb} = f_I S_w$

\[
M_{RI} = 19.8 \text{ ksi} \times 793.0 \text{ in.}^3
\]

\[
= 15,701.4 \text{ kip-in}
\]

\[
= 1,308.5 \text{ kip-ft}
\]

Then:

\[
RF_I = \frac{M_{RI} - M_{DL} \frac{S_w^{L}}{S_{s}^{DL}} - M_{SDL} \frac{S_{wb}^{L}}{S_{s}^{SDL}}}{M_{LL+I}}
\]
\[RF_I = \frac{M_{RI} - M_{DL} \frac{S^L_{bn}}{S^L_b} - M_{SDL} \frac{S_{bn}}{S_{bn}}}{M_{LL+1}} \]

\[= \frac{1,308.5 - 439.2}{563.8} - \frac{129.1}{724.1} = 0.728 \]

Alternatively, in terms of stress:

\[RF_I = \frac{f_I \frac{M_{DL}}{S_{DL}^L} - M_{SDL} \frac{S_{DL}}{S_{DL}^L}}{M_{LL+1}} \]

\[= \frac{19.8 \text{ ksi} \times 439.2 \text{ kip-ft} \times 12 \text{ in./ft}}{563.8 \text{ in.}^3} - \frac{129.1 \text{ kip-ft} \times 12 \text{ in./ft}}{724.1 \text{ in.}^3} = 0.728 \] as above

A1B.1.5.4—Operating Level (6B.5.2.1, Table 6B.5.2.1-2)

For steel with \(f_y = 36 \text{ ksi} \rightarrow f_O = 0.75 f_y \)

Thus:

\[f_O = 0.75(36) = 27.00 \text{ ksi} \]

And

\[\text{The Resisting Capacity (} M_{RO} \text{)} = f_O S^L \]

\[M_{RO} = 27.00 \text{ ksi} \times (793.0 \text{ in.}^3) \]

\[= 21,411 \text{ kip-in.} \]

\[= 1,784.3 \text{ kip-ft} \]

Then

\[RF_0 = \frac{1,784.3 - 439.2 \times 793.0}{563.8} - \frac{129.1 \times 793.0}{724.1} \]

\[= 0.728 \] or \(0.728 \times 36 \text{ tons} = 26.2 \text{ tons} \)
$RF_0 = \frac{1,025.17}{754.6}$

$= 1.359$ or 1.359×36 tons $= 48.9$ tons

A1B.1.5.5—Summary of Ratings for Allowable Stress Rating Method

<table>
<thead>
<tr>
<th></th>
<th>RF</th>
<th>Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>0.728</td>
<td>26.2</td>
</tr>
<tr>
<td>Operating</td>
<td>1.359</td>
<td>48.9</td>
</tr>
</tbody>
</table>

A1B.1.6—Load Factor Rating (6B.3.2, 6B.4.3, and 6B.5.3)

Consider maximum moment section only for this example. See general notes.

A1B.1.6.1—Impact (Use Standard AASHTO) (6B.6.4)

From Allowable Stress Rating, $I = 0.26$
See Calcs A1B.1.5.1

A1B.1.6.2—Distribution (Use Standard AASHTO) (6B.6.3)

From Allowable Stress Rating $DF = 1.3333$
See Calcs A1B.1.5.2

$M_{LL+I} = M_{LL} (1+I) \times DF$

$= 448.1 \times (1 + 0.263)(1.3333)$

$= 754.6$ kip-ft (as for AS rating)

A1B.1.6.3—Capacity of Section, M_R (6B.5.3.1)

For braced, compact, composite sections:

$M_R = M_u$

AASHTO 10.50.1.1

where M_u is found in accordance with applicable load factor provisions of AASHTO.

Check assumptions:

1. Section is fully braced along top flange by composite deck (for Live Load and SDL).
2. To check if section is compact, need to apply provisions of AASHTO 10.50.1.1.1.

These checks follow.

The compressive force in the slab, C, is equal to the smallest value given by the following equations:

$C = 0.85 f'c b_t s + (A F_y)_c$

AASHTO 10.50.1.1(a)

AASHTO Eq. 10-123

Neglecting that part of the reinforcement that lies in the compressive zone, the equation reduces to:

$C_{CONC} = 0.85 f'c b_t s = 0.85 (3 \text{ ksi})(87 \text{ in.})(7.25 \text{ in.}) = 1,608.4$ kip

© 2020 by the American Association of State Highway and Transportation Officials.
All rights reserved. Duplication is a violation of applicable law.
\[C = \left(AF_y \right)_{bf} + \left(AF_y \right)_{sf} + \left(AF_y \right)_{w} \]

where \((AF_y)_{bf} \) includes cover plate, this equation reduces to:

\[C_{STL} = \left(38.26 \text{ in.}^2 + 6.56 \text{ in.}^2 \right) (36 \text{ ksi}) = 1,613.5 \text{ kip} \]

\[C_{CONC} < C_{STL} \Rightarrow C_{CONC} = 1,608.4 \text{ kip (controls)} \]

Capacity:

\[C' = \frac{\sum (AF_y)}{2} - \frac{C}{2} = \frac{1,613.5 - 1,608.4}{2} = 2.55 \text{ kip} \]

\[(AF_y)_{gf} = (11.51 \times 0.855)(36) = 354 \text{ kip} > 2.55 \text{ kip} \Rightarrow \text{NA in top flange of the I-girder} \]

\[\bar{y} = \frac{C'}{(AF_y)_{gf}} = \frac{2.75}{354}(0.855) = 0.0062 \text{ in.} \]

Since the PNA is within the top of the flange, the depth of the web in compression at the plastic moment, \(D_{CP} \), is equal to zero. Hence, the web slenderness requirement given by Eq. 10-129 in AASHTO Article 10.50.1.1.2 is automatically satisfied.

Check the ductility requirement given by Eq. 10-129a in AASHTO Article 10.50.1.1.2:

\[\left(\frac{D_p}{D'} \right) \leq 5 \]

\[D' = \beta \left(\frac{d + t_s + t_b}{7.5} \right) \]

\[\beta = 0.9 \text{ for } F_y = 36,000 \text{ psi} \]

\[D' = 0.9 \left(\frac{33.725 + 7.25 + 0.00}{7.5} \right) = 4.917 \]

\[D_p = 7.25 + 0.0062 \text{ in.} = 7.2562 \text{ in.} \]

\[\left(\frac{D_p}{D'} \right) = \frac{7.2562}{4.917} = 1.4757 \leq 5 \text{ OK} \]

Since the top flange is braced by shear studs anchored in the hardened concrete deck, local and lateral buckling requirements need not be checked. The capacity of composite beams in simple spans satisfying the preceding web slenderness and ductility requirements is given by Eq. 10-129c in AASHTO 10.50.1.1.2 when \(D_p \) exceeds \(D' \):

\[D' < D_p \leq 5D' \]

\[4.917 \text{ in.} < 7.2562 \text{ in.} \leq 5 \times 4.917 \text{ in.} = 24.585 \text{ in.} \]

Therefore:

\[C = M_c = M_U = \frac{5M_p - 0.85M_y}{4} + \frac{0.85M_y - M_p}{4} \left(\frac{D_p}{D'} \right) \]

\[\text{AASHTO Eq. 10.129c} \]
Compute the plastic moment capacity, M_p

$M_p = C \times \text{arm} = (1,608.4 + 2.55)(22.643) = 36,476.7 \text{ kip-in.} = 3,039.7 \text{ kip-ft}$

$M_R = \frac{5(3,039.7) - 0.85(2,379.0)}{4} + \frac{0.85(2,379.0) - 3,035}{4}(1.4757) = 2,918.7 \text{ kip-ft}$

Figure A1B.1.6.3-1—Cross Section—Interior Stringer, for Determining Plastic Moment Capacity, M_p

$RF_I^{\text{LF}} = \frac{M_R - A_1M_D}{A_2M_{L+1}}$
Eq. 6B.4.1-1

where:

$A_1 = 1.3$ and $A_2 = 2.17$

Thus:

$RF_I^{\text{LF}} = \frac{(2918.7) - 1.3 \times (439.2 + 129.1)}{2.17(754.6)}$

$RF_I^{\text{LF}} = 1.331$ or $1.331 \times 36 \text{ tons} = 47.9 \text{ tons}$

A1B.1.6.5—Operating Level (6B.4.3)

Only change is $A_2 = 1.3$

Thus:
APPENDIX A: ILLUSTRATIVE EXAMPLES

\[
RF_{O}^{LF} = \frac{2.17}{1.30} \quad RF_{j}^{LF} = \frac{2.17}{1.30}(1.33) \\
RF_{O}^{LF} = 2.222 \text{ or } 2.222 \times 36 \text{ tons} = 80.0 \text{ tons}
\]

A1B.1.6.6—Check Serviceability Criteria

For HS loadings, overload is defined as \(D + 5(L + I)/3\) \hspace{1cm} AASHTO 10.57

\[
f_{DL} + f_{SDL} + 1.67\left(f_{LL+1}\right) \leq \text{Serv. Strength} = 0.95F_{y} \hspace{1cm} \text{AASHTO 10.57.2}
\]

Thus \(A_1 = 1.0\) and \(A_2 = 1.67\) for service rating:

\[
RF_{i}^{LF} = \frac{0.95F_{y} - (1.0)f_{DL} - (1.0)f_{SDL}}{(1.67)f_{LL+1}}
\]

\[
= \frac{0.95(36 \text{ ksi}) - (1.0)\frac{439.2 \times 12}{563.8} - (1.0)\frac{129.1 \times 12}{724.1}}{1.67\frac{754.6 \times 12}{793.0}}
\]

\[
= \frac{34.20 - 9.438 - 2.139}{1.67(11.419)}
\]

\[
= 1.191 \text{ or } 1.191 \times 36 \text{ tons} = 42.9 \text{ tons}
\]

Check the web compressive stress:

\[
C = F_{cr} = \frac{26,200,000ak}{D} \left(\frac{D}{t_{w}}\right)^{2} \hspace{1cm} \text{AASHTO Eq. 10-173}
\]

where:

\[k = 9\left(\frac{D}{D_{c}}\right)^{2}\] and \(\alpha = 1.3\)

Since \(D_{c}\) is a function of the dead-to-live-load stress ratio according to the provisions of AASHTO 10.50(b), an iterative procedure may be necessary to determine the rating factor:

Compute the compressive stresses at the top of the web:

\[
f_{DL} = \frac{439.2(12)(18.163)}{8,291.5} = 11.545 \text{ ksi}
\]

\[
f_{ADL} = \frac{129.1(12)(10.405)}{16,267.4} = 0.991 \text{ ksi}
\]

\[
f_{LL+1} = \frac{(754.6)(12)(4.352)}{22,614.5} = 1.743 \text{ ksi}
\]

Total compressive stress = 14.279 ksi
Compute the tensile stresses at the bottom of the web:

\[
f_{DL} = \frac{439(12)(13.227)}{8,291} = 8.408 \text{ ksi}
\]

\[
f_{ADL} = \frac{129.1(12)(20.985)}{16,267.4} = 1.998 \text{ ksi}
\]

\[
f_{LL+I} = \frac{4.6(12)(27.038)}{22,614.5} = 10.826 \text{ ksi}
\]

Total tensile stress = 21.232 ksi

\[
D_c = 31.39 \times \left(\frac{14.279}{14.279 + 21.232} \right) = 12.622 \text{ in.}
\]

\[
k = 9 \left(\frac{D}{D_c} \right)^2 = 9 \left(\frac{31.39}{12.622} \right)^2 = 55.66
\]

\[
C = F_{cr} = \frac{26,200,000(1.3)(55.66)}{(31.39)^2(1,000)} = 647.23 \text{ ksi} > F_{yw}
\]

\[
C = F_{cr} = F_{yw} = 36 \text{ ksi}
\]

Thus, rating factor based on compressive stress to top of the web:

\[
RF_f = \frac{36.00 - 11.545 - 0.991}{1.67(1.743)} = 8.061 \text{ or } 8.061 \times 36 \text{ tons} = 290.2 \text{ tons}
\]

Since the computed rating factor would cause the total stresses in the tension flange to far exceed \(F_y\) (causing the neutral axis to be higher on the web), further iterations are not necessary in this case. The web compressive stress does not govern the serviceability rating.

A1B.1.6.6b—At Operating Level

\[
f_{DL} + f_{SDL} + (f_{LL+I}) \leq \text{Serv. Strength} = 0.95F_y \quad \text{AASHTO 10.57.2}
\]

\[
f_{DL} + f_{SDL} + RF_O (f_{LL+I}) \leq \text{Serv. Strength} = 0.95F_y
\]

Thus \(A_1 = 1.0\) and \(A_2 = 1.00\) for service rating at operating level.

Thus:

\[
RF_o = \frac{1.67}{1.0} \times RF_f = 1.67 \times 1.191
\]

\[
= 1.989 \text{ or } 1.989 \times 36 \text{ tons} = 71.6 \text{ tons}
\]
APPENDIX A: ILLUSTRATIVE EXAMPLES

A1B.1.7.6—Summary of Ratings for Load Factor Rating Method

Table A1B.1.6.7-1—Summary of Ratings for Load Factor Rating Method—Interior Stringer

<table>
<thead>
<tr>
<th></th>
<th>RF</th>
<th>Tons</th>
<th>Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>1.191</td>
<td>42.9</td>
<td>Serviceability</td>
</tr>
<tr>
<td>Operating</td>
<td>1.989</td>
<td>71.6</td>
<td>Serviceability</td>
</tr>
</tbody>
</table>

A1B.1.7—Load Factor Rating—Rate for Single-Unit Formula B Loads

\[M_{LL+I} \text{ from Appendix C6B:} \]

<table>
<thead>
<tr>
<th>Span (ft)</th>
<th>HS-20</th>
<th>NRL</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>512.2</td>
<td>595.1</td>
<td>430.2</td>
<td>472.5</td>
<td>525.0</td>
<td>569.9</td>
</tr>
<tr>
<td>70</td>
<td>619.2</td>
<td>714.2</td>
<td>510.2</td>
<td>564.4</td>
<td>628.3</td>
<td>685.4</td>
</tr>
</tbody>
</table>

By interpolation:

| 65 | 565.7 | 654.7 | 470.2 | 518.5 | 576.7 | 627.7 |

Apply distribution factor \(DF = 1.333 \)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>754.2</td>
<td>872.9</td>
<td>626.9</td>
<td>691.3</td>
<td>768.9</td>
<td>836.9</td>
</tr>
</tbody>
</table>

Capacity of Section \(M_R = 2,918.7 \text{ kip-ft} \)

Dead Load \(M_{DL} = 439.2 \text{ kip-ft} \)

Superimposed Dead Loads \(M_{SDL} = 129.1 \text{ kip-ft} \)

Inv. \(RF = \frac{2,918.7 - 1.30(439.2 + 129.1)}{2.17(M_{LL+I})} \)

Opr. \(RF = \frac{2,918.7 - 1.30(439.2 + 129.1)}{1.30(M_{LL+I})} \)

Strength Rating Factors:

<table>
<thead>
<tr>
<th></th>
<th>HS-20</th>
<th>NRL</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>1.332</td>
<td>1.151</td>
<td>1.602</td>
<td>1.453</td>
<td>1.306</td>
<td>1.200</td>
</tr>
<tr>
<td>Operating</td>
<td>2.223</td>
<td>1.921</td>
<td>2.675</td>
<td>2.426</td>
<td>2.181</td>
<td>2.004</td>
</tr>
</tbody>
</table>

Check Serviceability Criteria:

\[RF_i = \frac{0.95F_y - f_{DL} - f_{SDL}}{1.67f_{LL+I}} \]

Capacity of Section, \(f_R = 0.95F_y = 34.20 \text{ ksi} \)

Dead Load \(f_D = 9.348 \text{ ksi} \)

Superimposed Dead Loads \(f_{SDL} = 2.139 \text{ ksi} \)

\[RF_i = \frac{34.2 - 9.348 - 2.139}{1.67(M_{LL+I} \times 12)} \]

\[RF_0 = \frac{34.2 - 9.348 - 2.139}{1.00(M_{LL+I} \times 12)} \]
Serviceability Rating Factors:

<table>
<thead>
<tr>
<th></th>
<th>HS20</th>
<th>NRL</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>1.191</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operating</td>
<td>1.989</td>
<td>1.719</td>
<td>2.394</td>
<td>2.171</td>
<td>1.952</td>
<td>1.793</td>
</tr>
</tbody>
</table>

As the Notional Rating Load, NRL, $RF > 1.0$ for strength and serviceability, the bridge has adequate capacity for all legal loads, including the single-unit Formula B trucks.
PART C—SUMMARY

A1C.1—Summary of All Ratings for Example A1

Table A1C.1-1—Summary of Rating Factors for All Rating Methods—Interior Stringer

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Design Load Rating (HL-93)</th>
<th>Legal Load Rating</th>
<th>Permit Load Rating</th>
<th>HS-20 Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory</td>
<td>Operating</td>
<td>Type 3</td>
<td>Type 3S2</td>
</tr>
<tr>
<td>Strength I</td>
<td>Flexure</td>
<td>1.294</td>
<td>1.677</td>
<td>3.344</td>
</tr>
<tr>
<td>Strength II</td>
<td>Flexure</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Service II</td>
<td>—</td>
<td>1.208</td>
<td>1.570</td>
<td>2.318</td>
</tr>
<tr>
<td>Fatigue I</td>
<td>0.326</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Allowable Stress Method</td>
<td>—</td>
<td>—</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>Load Factor Method</td>
<td>Strength</td>
<td>—</td>
<td>—</td>
<td>NP</td>
</tr>
<tr>
<td>Serviceability</td>
<td>—</td>
<td>—</td>
<td>NP</td>
<td>NP</td>
</tr>
</tbody>
</table>

* Rating Factors for LF method corresponds to operating level are listed in this table.
NP—Calculations are not performed

Table A1C.1-2—Summary of Rating Factors for Load and Resistance Factor Rating Method—Exterior Stringer

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Design Load Rating (HL-93)</th>
<th>Legal Load Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory</td>
<td>Operating</td>
</tr>
<tr>
<td>Strength II</td>
<td>Flexure</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>—</td>
</tr>
<tr>
<td>Service II</td>
<td>—</td>
<td>1.477</td>
</tr>
<tr>
<td>Fatigue</td>
<td>NP</td>
<td>—</td>
</tr>
</tbody>
</table>

NP—Calculations are not performed
A1C.2—References

The reinforced concrete slab bridge design and legal load check is detailed in Example A7, which was revised by the AASHTO Committee on Bridges and Structures at their 2019 Annual Meeting.

Editor's Note: Since all of Example A7 was revised by the AASHTO Committee on Bridges and Structures at their 2019 Annual Meeting, the new text in this Section has not been underlined.

Note: Evaluation of this bridge was performed in accordance to the 3rd Edition of the MBE and 8th edition of the AASHTO LRFD Bridge Design Specifications (LRFD Design.)

A7.1—Bridge Data

- **Span Length:** 21.50 ft (simple span, distance from bearing to bearing). 0.50 ft End of the slab beyond the CL support
- **Year Built:** 1963
- **Material:**
 - Deck Concrete: $f'_c = 3.00$ ksi
 - Reinforced Steel: $f'_y = 40.00$ ksi
- **Structure Condition:** No deterioration. NBI Item 59 = 7. Member is in good condition
- **Riding Surface:** Not field verified and documented
- **ADTT (one direction):** Unknown
- **Skew:** 0°
- **Bridge category:** Interstate Bridge
- **Overlay Thickness:** 3.5 in. (field verified)

![Figure A7.1-1—Reinforced Concrete Slab Bridge](image)

Cross Section

Dist. from edge to center of rebar = [Clear cover (1.5 in.)+1/2 the rebar diameter]
A7.2—Dead Load Analysis

A7.2.1—Interior Strip—Unit (One Foot) Width

A7.2.1.1—Components, DC

Concrete slab:

\[
\left(\frac{14}{12} \right) (1.0) = 0.175 \text{ kip/ft}
\]

Parapet and curb:

\[
\frac{2 \left[(1.5)(1.5) + (2.33)(1.0) \right] (1.0)(0.150)}{43} = 0.032 \text{ kip/ft}
\]

Total Dead Load/unit width DC = 0.207 kip/ft

Dead Load Moment = \(M_{DC} \) = \(\frac{1}{8} \times 0.207 \times 21.5^2 \)

= 12.0 kip-ft at mid span

A7.2.1.2—Wearing Surface, DW

Asphalt Thickness = 3.50 in. (field measured)

Asphalt Overlay = \(\left(\frac{3.5}{12} \right) (1.0)(0.144) = 0.042 \text{ kip/ft} \)

Dead Load Moment = \(M_{DW} \) = \(\frac{1}{8} \times 0.042 \times 21.5^2 \)

= 2.4 kip-ft at mid span

A7.3—Live Load Analysis (Design Load Check)

(a) Equivalent strip width for slab type bridges (Interior Strip)

A7.3.1—One Lane Loaded

\[E = 10.0 + 5.0 \sqrt{L_1 W_1} \]

Where \(L_1 \) = Lesser of the actual span length or 60 ft

\(L_1 = 21.50 \text{ ft} < 60 \text{ ft}, \) use 21.50 ft

\(W_1 = \) Lesser of Bridge width or 30.0 ft

\(= 43.0 \text{ ft} > 30 \text{ ft}, \) use 30.00 ft

\[
E = 10.0 + 5.0 \sqrt{21.5 \times 30}
\]

= 137.0 in.

= 11.42 ft
A7.3.2—More than One Lane Loaded

\[E = 84.0 + 1.44 \sqrt{L_1 W_1} \leq \frac{12.0 \, W}{N_L} \]

Where \(L_1 \) = Lesser of the actual span length or 60 ft

\(L_1 = 21.50 \, \text{ft} < 60 \, \text{ft}, \text{use} \ 21.50 \, \text{ft} \)

\(W_1 = \) Lesser of Bridge width or 60.0 ft

\(W_1 = 43.0 \, \text{ft} > 60 \, \text{ft}, \text{use} \ 43.00 \, \text{ft} \)

\(W_1 = 43.0 \, \text{ft} < 60 \, \text{ft}, \text{use} \ 43.0 \, \text{ft} \).

\(W = \) Physical edge to edge bridge width = 43.0 ft

\(N_L = \frac{40.0}{12} = 3.333 \, \text{ft}, \text{use} \ 3 \, \text{Lanes} \)

\[E = 84.0 + 1.44 \sqrt{21.50 \times 43.0} \leq \frac{12.0 \, W}{N_L} \]

= 127.8 in.

= 11.41 ft

\[\frac{12.0 \, W}{N_L} = \frac{12 \times 43}{3} = 172 \, \text{in.} > 127.8 \, \text{in.} \quad \text{OK} \]

So, use \(E = 127.8 \, \text{in.} = 10.65 \, \text{ft} \)

(b) Longitudinal "Edge" Strip

For longitudinal edge strips, the effective strip width is:

Sum of:

1. the distance between the edge of the deck and the inside face of the barrier

2. one-quarter the strip width specified in LRFD Design Article 4.6.2.1.3, 4.6.2.3, or 4.6.2.10, as appropriate

3. 12.0 in.

but, the effective edge strip width shall not exceed either one-half the full strip width or 72.0 in.

So, \(E_{\text{edge}} = 18.0 \, \text{in.} + 0.25 \times 137.0 \, \text{in.} + 12.0 \, \text{in.} = 64.25 \, \text{in.} \)

but, limited to = 0.5 \times 137.0 \, \text{in.} = 68.5 \, \text{in.} or 72.00 \, \text{in.}

So, use \(E = 64.25 \, \text{in.} = 5.3542 \, \text{ft} \)

LRFD Design Article 4.6.2.1.4b assumes the longitudinal edge strip supports one wheel line and a tributary portion of the design lane load where appropriate.

By comparison of the ratios of the tributary design lane load width to effective slab width, the edge strip is estimated not to govern for this bridge. Note that parapet dead load was assumed to be uniformly distributed across the full bridge width and that parapet width can play an influential role when determining the governing case.
Figure A7.3.2-1—Longitudinal Edge Strip Comparison

From the Figure A7.3.2-1, one-inch edge slab strip will carry

\[\frac{1}{6} \times 42.5 + \frac{46.25}{64.25} \text{ lane} = 0.0156 \text{ wheel} + 0.7198 \text{ lane} \]

From the Figure A7.3.2-1, one-inch interior slab strip will carry

\[\frac{2}{1} \times 27.8 + \frac{120}{127.8} \text{ lane} = 0.01565 \text{ wheel} + 0.9390 \text{ lane} \]

load carried by 1in. edge strip

Since the rebar pattern within the edge strip and the interior strip is the same, the rating of the interior strip will control; as a result, only the rating of the interior strip width is performed in this example.

A7.3.2.1—Midspan Live Load Force Effects (HL-93)

Dynamic Load Allowance = 33 percent
Equivalent Strip Width = 10.65 ft

Live Load Moment per unit width of slab:

\[M_{LL} = \frac{328.0}{10.65} = 30.8 \text{ kip-ft/ft slab} \]

A7.4—Compute Nominal Resistance of Unit Width (1 ft)

Flexural Resistance:

Rectangular Section = \(b_w = b = 12 \text{ in.} \)

\[c = \frac{A_s f_y}{\alpha_1 f_c' B_1 b} \]

© 2020 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
\[A_s = 0.79 \times 2 \quad \#8 \text{ bars at 6 in. CC} \]
\[= 1.58 \text{ in.}^2/\text{ft} \]
\[\alpha_i = 0.85 \quad \text{(for } f'_c < 10 \text{ ksi}) \quad \text{LRFD Design 5.6.2.2} \]
\[\beta_i = 0.85 \quad \text{(for } f'_c < 4 \text{ ksi}) \quad \text{LRFD Design 5.6.2.2} \]
\[f'_c = 40.00 \text{ ksi} \]
\[f_c = 3.00 \text{ ksi} \]
\[c = \frac{1.58^2 \times 40}{0.85 \times 3 \times 0.85 \times 12} \]
\[= 2.430 \text{ in.} \]
\[a = c\beta_i \quad \text{LRFD Design 5.6.2.2} \]
\[= 2.43 \times 0.85 \]
\[= 2.066 \text{ in.} \]
\[d_t = 14.00 - 2.00 = 12.000 \text{ in.} \quad \text{LRFD Design 5.6.3.2.2} \]
\[M_n = A_s f_y \left(d_s - \frac{a}{2} \right) \quad \text{LRFD Design Eq. 5.6.3.2.2-1} \]
\[= 1.58 \times 40 \left(12.0 - \frac{2.066}{2} \right) \times \frac{1}{12} \]
\[= 57.76 \text{ kip-ft} \]

A7.5—Maximum Reinforcement (6A.5.5, LRFD Design 5.6.2.1)

Current provisions of the LRFD specification have eliminated the check for maximum reinforcement. Instead, the factored resistance (\(f \)) of compression-controlled sections shall be reduced in accordance with LRFD Design Article 5.5.4.2. This approach limits the capacity of over-reinforced (compression-controlled) sections.

The net tensile strain, \(\varepsilon_t \), is the tensile strain at nominal strength and determined by strain compatibility using similar triangles.

Given an allowable concrete strain of 0.003 and depth to neutral axis \(c = 2.43 \) in.

\[\frac{\varepsilon_c}{c} = \frac{\varepsilon_t}{d_t - c} \quad \text{LRFD Design Figure C5.6.2.1-1} \]

\[\frac{0.003}{2.430 \text{ in.}} = \frac{\varepsilon_t}{12.00 \text{ in.} - 2.430 \text{ in.}} \]

\[\varepsilon_t = 0.0118 \]

The tension-controlled strain limit shall be taken as 0.005 for nonprestressed reinforcement with \(f_y \leq 75.0 \text{ ksi} \).
For $\varepsilon_t = 0.0118 > 0.005$, the section is tension controlled and Resistance Factor, f_r, shall be taken as 0.90.

A7.6—Minimum Reinforcement (6A.5.6, LRFD Design 5.6.3.3)

Amount of reinforcement must be sufficient to develop M_r equal to the lesser of $1.33M_u$ or M_{cr}.

$$M_r = \varphi M_n = 0.90 \times 57.76 \text{ kip-ft} = 51.98 \text{ kip-ft}$$

1. $1.33M_u = 1.33 \times M_u = 1.33 \times (1.25 \times 12.0 + 1.25 \times 2.4 + 1.75 \times 30.8)$

 $= 95.6 \text{ kip-ft} > 51.98 \text{ kip-ft}$ No Good

2. $M_{cr} = \gamma_3 \left((1 + \gamma_1 f_r + \gamma_2 f_{cpe}) S_c - M_{dnc} \left(\frac{S_c}{S_{nc}} - 1 \right) \right)$

where

$$\gamma_1 = 1.60$$

$$\gamma_3 = \frac{F_u}{F_a} = \frac{40.00 \text{ ksi}}{70.00 \text{ ksi}}$$

Ultimate tensile strength of 40 ksi rebar is 70 ksi

$$= 0.571$$

$$S_{nc} = \frac{I}{\gamma_i}$$

where:

I = moment of inertia of uncracked section (neglecting reinforcement steel)

$$I = \frac{1}{12} \times 12 \text{ in.} \times (14 \text{ in.})^3$$

y_t = distance from neutral axis of the uncracked section to the extreme tension fiber

$$= \frac{14.00}{2} = 7.00 \text{ in.}$$

$$S_{nc} = \frac{2,744.00 \text{ in.}^4}{700 \text{ in.}} = 392.0 \text{ in.}^3$$

$$S_c = S_{nc}$$

$$f_r = 0.24 \lambda \sqrt{f_c}$$

$\lambda = 1$ for normal weight concrete

$$f_r = 0.24 \times 1 \times \sqrt{3.00 \text{ ksi}} = 0.416 \text{ ksi}$$

$$M_{cr} = \gamma_3 \left((1 + \gamma_1 f_r + \gamma_2 f_{cpe}) S_c - M_{dnc} \left(\frac{S_c}{S_{nc}} - 1 \right) \right)$$
Dead Load Moment = \(M_{dmc} = \frac{0.175 \text{kip/ft} \times (21.5 \text{ ft})^2}{8} = 10.1 \text{ kip-ft at mid span} \)

\[
M_{cr} = 0.571 \left[(1.6 \times 0.416 \text{ ksi} + 0.4 \times 0) \times 392.0 \text{ in}^3 - 10.1 \left(\frac{392}{392} - 1 \right) \right]
\]

= 148.98 kip-in = 12.42 kip-ft

12.42 kip-ft < \(M_r = 51.98 \) kip-ft So, OK

Therefore, the section meets the requirements for minimum reinforcement.

A7.7—Shear

Concrete slabs and slab bridges designed in conformance with AASHTO Specifications LRFD Design 5.12.2.1 Article 4.6.2.3 may be considered satisfactory for shear.

In service concrete bridges that show no visible signs of shear distress need not be checked for shear when rating for the design load or legal load ratings.

A7.8—General Load-Rating Equation (6A.4.2)

\[
RF = \frac{C - (\gamma_{DC})(DC) - (\gamma_{DW})(DW) \pm (\gamma_{P})(P)}{\gamma_{L}}(LL + IM)
\]

Eq. 6A.4.2.1-1

A7.9—Evaluation Factors (for Strength Limit States)

A7.9.1—Resistance Factor, \(\phi \) (LRFD Design 5.5.4.2)

\(\phi = 0.90 \) For flexure

A7.9.2—Condition Factor, \(\phi_c \) (6A.4.2.3)

\(\phi_c = 1.00 \), since the member is in good condition. NBI Item 59 = 7.

Table 6A.4.2.3-1

A7.9.3—System Factor, \(\phi_s \) (6A.4.2.4)

\(\phi_s = 1.00 \), since the bridge is a Slab bridge

Table 6A.4.2.4-1

A7.10—Design Load Rating (6A.4.3)

A7.10.1—Strength I Limit State (6A.5.4.1)

Capacity, \(C = \phi_c \phi_{n} \phi_{R_s} \)

\[
RF = \frac{(\phi_c)(\phi_s)(\phi_n)R_s - (\gamma_{DC})(DC) - (\gamma_{DW})(DW)}{\gamma_{L}}(LL + IM)
\]

Eq. 6A.4.2.1-2

Load Factors are:

<table>
<thead>
<tr>
<th>Load</th>
<th>Inventory</th>
<th>Operating</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>1.25</td>
<td>1.25</td>
<td>Asphalt thickness was field verified</td>
</tr>
<tr>
<td>LL + IM</td>
<td>1.75</td>
<td>1.35</td>
<td></td>
</tr>
</tbody>
</table>

© 2020 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law.
A7.10.1a—Inventory Level

Flexure: \(RF = \frac{(1.0)(1.0)(0.9)(57.76) - (1.25)(12.00 + 2.40)}{(1.75)(30.8)} \)

\[RF = 0.631 \]

A7.10.1b—Operating Level

Flexure: \(RF = 0.631 \times \frac{1.75}{1.35} \) (Since the capacity is independent of demand)

\[RF = 0.818 \]

As \(RF < 1.0 \) for HL-93, bridge needs to be evaluated for legal loads.

A7.10.2—Service Limit State

No service limit states apply to reinforced concrete bridge members.

A7.11—Legal Load Rating (6A.4.4)

A7.11.1—Live Load Demand

A7.11.1a—AASHTO Legal Loads—Routine Commercial Traffic—Type 3, 3S2, 3-3 (Rate for all 3)

From previous calculations, \(E = 10.650 \) ft

\(IM = 33 \) percent (Unknown riding surface conditions)

Moment demands for live load with 33 percent impact for 21.5 ft span were established by interpolating the values given in Table E6A-1.

<table>
<thead>
<tr>
<th>(M_{LL}) (interpolated) (kip-ft)</th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.00</td>
<td>182.35</td>
<td>164.65</td>
<td></td>
</tr>
</tbody>
</table>

| \(\frac{M_{LL}+IM}{E} \) (kip-ft/ft) | 18.78 | 17.12 | 15.46 |

A7.11.1b—Live Load: AASHTO Legal Loads—Specialized Hauling Vehicles (SHVs) and Notional Rating Load—SU4, SU5, SU6, SU7, and NRL

Moment demands for live load with 33 percent impact for 21.5 ft span were established by interpolating the values given in Table E6A-2.

<table>
<thead>
<tr>
<th>(M_{LL}+IM) (interpolated) (kip-ft)</th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>234.25</td>
<td>248.45</td>
<td>263.20</td>
<td>263.20</td>
<td>263.20</td>
<td>263.20</td>
</tr>
</tbody>
</table>

| \(\frac{M_{LL}+IM}{E} \) (kip-ft/ft) | 22.00 | 23.33 | 24.71 | 24.71 | 24.71 |

A7.11.2—Strength I Limit State (6A.5.4.2.1)

A7.11.2a—For Types 3, 3S2, and 3-3

Dead Load \(DC: \gamma_{DC} = 1.25 \)
Dead Load \(DW: \gamma_{DW} = 1.25 \)
\(ADTT \) (One Direction) = Unknown

Generalized Live-Load Factor for Legal Loads: \(\gamma_{L} = 1.45 \)
Flexure:

\[
RF = \frac{(1.0)(1.0)(0.90)(57.76) - (1.25)12.00 + 2.40}{(1.45)(M_{LL+IM})}
\]

<table>
<thead>
<tr>
<th></th>
<th>Type 3</th>
<th>Type 3S2</th>
<th>Type 3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{LL+IM} / E) (kip-ft/ft)</td>
<td>18.78</td>
<td>17.12</td>
<td>15.46</td>
</tr>
<tr>
<td>(RF) (Flexure)</td>
<td>1.248</td>
<td>1.369</td>
<td>1.516</td>
</tr>
</tbody>
</table>

No posting required as \(RF > 1.0\) for all AASHTO Legal Loads. 6A.8.3

A7.11.2b—For Specialized Hauling Vehicles (SHVs) and NRL

Dead Load DC: \(\gamma_{DC} = 1.25\)
Dead Load DC: \(\gamma_{DW} = 1.25\)

\(ADTT\) (One Direction) = Unknown

Generalized Live-Load Factor for Legal Loads, \(\gamma_{LL} = 1.45\)

<table>
<thead>
<tr>
<th></th>
<th>SU4</th>
<th>SU5</th>
<th>SU6</th>
<th>SU7</th>
<th>NERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{LL+IM} / E) (kip-ft/ft)</td>
<td>22.00</td>
<td>23.33</td>
<td>24.71</td>
<td>24.71</td>
<td>24.71</td>
</tr>
<tr>
<td>(RF) (Flexure)</td>
<td>1.065</td>
<td>1.005</td>
<td>0.948</td>
<td>0.948</td>
<td>0.948</td>
</tr>
</tbody>
</table>

Comparison of the above safe capacities for the SU4, SU5, SU6, and SU7 to the NRL Safe Load Capacity demonstrates that for bridges that do not rate for the NRL Load, a posting analysis should be performed to resolve posting requirements for single-unit multi-axle trucks. The above results show that the Safe Load Capacity for the SU4 and SU5 vehicles is adequate; however, posting may be required for SU6 and SU7 vehicles. 6A.8.2 and C6A.8.2

The decision to post a bridge should be made by the Bridge Owner. When for any legal truck the Rating Factor (\(RF\)) is between 0.3 and 1.0, then the following equation should be used to establish the safe posting load for that vehicle type.

\[
\text{Safe Posting Load} = \frac{W}{0.7}(RF - 0.3)
\]

Where \(W\) = Weight of rating vehicle. Eq. 6A.8.3-1

Therefore, for SU6 and SU7, the recommended safe posting loads are:

<table>
<thead>
<tr>
<th>Truck</th>
<th>SU6</th>
<th>SU7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (Tons)</td>
<td>34.75</td>
<td>38.75</td>
</tr>
<tr>
<td>Safe Posting Loads (Tons)</td>
<td>32</td>
<td>35</td>
</tr>
</tbody>
</table>

(Rounded down)

A7.11.3—Service Limit State

No service limit states apply to reinforced concrete bridge members at the legal load rating. Table 6A.4.2.2-1

A7.11.4—Shear

Concrete slabs and slab bridges designed in conformance with AASHTO Specifications may be considered satisfactory for shear. LRFD Design 5.12.2.1

A7.11.5—Summary

Safe Load Capacity (tons), \(RT = RF \times W\)

Eq. 6A.4.4.4-1
The NRL rating demonstrates Article C6A.4.4.2.1b: “Bridges that rate for the NRL loading will have adequate load capacity for all legal Formula B truck configurations up to 80 kips.” Example A1 shows this holding true NRL RF > 1.00 and all SU RF > 1.00, while Examples A2 and A7 show when NRL RF < 1.00, RF for the SHVs may or may not be >1.00 and needs to be checked on an individual basis.

A7.12—Summary of Rating Factors

Table A7.12-1 Summary of Rating Factors—Concrete Slab Interior Strip

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Design Load Rating</th>
<th>Legal Load Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory</td>
<td>Operating</td>
</tr>
<tr>
<td>Strength I</td>
<td>Flexure</td>
<td>0.63</td>
</tr>
</tbody>
</table>

A7.13—Reference