Final Report

Study No.: 16020502G201

LAUS GmbH Test Item: (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1)

Final Report

Original 2 of 2

Determination of short term toxicity of (9Z)-9-Octadecenoic acid - Ncyclohexylcyclohexanamine (1:1) against *Daphnia magna* STRAUS according to OECD 202 resp. EU C.2

Study No.: 16020502G201

Sponsor: Hermann Bantleon GmbH Blaubeurer Str. 32 89077 Ulm Germany Monitor: Dr. Ben Müller-Zermini Test Facility: LAUS GmbH Auf der Schafweide 20 D-67489 Kirrweiler Germany Study Director: Manfred Muckle

Final Report

Study No.: 16020502G201

LAUS GmbH Test Item: (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1)

1 GLP-COMPLIANCE STATEMENT

It is hereby declared that all tests were made in accordance with the "Revised OECD Principles of Good Laboratory Practice" (Paris, 1997) as stated in the following guidelines:

- OECD Principles of Good Laboratory Practice, adopted by Council on 26th November 1997; Environment Directorate, Organisation for Economic Cooperation and Development, Paris 1998
- Directive 2004/10/EC of the European Parliament and of the Council of 11 February 2004 on the harmonisation of laws, regulations and administrative provisions relating to the application of the principles of good laboratory practice and the verification of their applications for tests on chemical substances (codified version)
- Chemicals Act of the Federal Republic of Germany (ChemG) §19a and §19b and annexes 1 and 2 from 28. Aug. 2013, published in Federal Law Gazette, Germany (BGBI) No. 55/2013 as of 06. Sep. 2013, and further revisions.

Responsibility for the accuracy of the information concerning the test item as well as for its authenticity rests with the sponsor.

I herewith accept responsibility for the data presented within this report.

There were no circumstances that may have affected the quality or integrity of the study.

Manfred Muckle Study Director

2 2 JUL 2016

Date

Information on Study Organisation:

Deputy Study Director	Uli Bangert
Study Plan dated	19. May 2016
Experimental Starting Date	06. Jun. 2016
Experimental Completion Date	09. Jun. 2016

Final Report

LAUS GmbH Test Item: (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1)

2 QUALITY ASSURANCE UNIT STATEMENT

This study has been inspected by the quality assurance unit according to the principles of Good Laboratory Practice. Study Plan and Final Report were checked at the dates given below, the Study Director and the management were informed with the corresponding report.

Also, the performance of the study was inspected, and findings were reported to Study Director and management. The inspection of short-term studies (duration less than four weeks) is carried out as audit of process concerning major technical phases of at least one similar test. Frequency is once or more a quarter.

The study was conducted and the reports were written in accordance with the Study Plan and the Standard Operating Procedures of the test facility.

Deviations from the Study Plan were acknowledged and assessed by the Study Director and included in the Final Report.

The reported results reflect the raw data of the study.

Verified Procedure	Inspected on	Findings reported on	Audit report no.
Study plan	13. May 2016	13. May 2016	160513-10
Performance of study	07. Jun. 2016	07. Jun. 2016	160607-03
Draft report	08. Jul. 2016	08. Jul. 2016	160708-08
Final report	22. Jul. 2016	22. Jul. 2016	160722-04

Revina-Rosa Resch Quality Assurance

2 2 JUL 2016

Date

Study No.: 16020502G201

Final Report LAUS GmbH Test Item: (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1)

Table of Contents	
1 GLP-COMPLIANCE STATEMENT	2
2 QUALITY ASSURANCE UNIT STATEMENT	3
3 SUMMARY	6
4 PURPOSE AND PRINCIPLE OF THE STUDY	7
5 LITERATURE	7
6 MATERIALS AND METHODS	8
6.1 Test Item	8
6.1.1 Specification	8
6.1.3 Preparation	о 8
6.2 Positive Control	8
6.3 Test System	9
6.3.1 Specification	9
6.3.2 Animal Husbandry	9 10
6.5 Test Vessels	10
6.6 Instruments and Devices	10
6.7 Analytical Method	11
6.7.1 Sample Preparation (control, 4.6 mg/L and 10 mg/L nominal concentration)	12
6.7.2 Sample Preparation (22 mg/L and 46 mg/L nominal concentration)	12
	12
7 1 Selection of Danhnia	13
7.2 Study Performance	13
7.3 Experimental Conditions	13
8 FINDINGS	14
8.1 Immobility	14
8.2 pH and O_2	14
8.3 Analytical Determinations	15
9 RESULTS AND STATISTICS	15
9.1 Biological Results Test Item	15
10 VALIDITY	16
11 DISCUSSION	16
12 DEVIATIONS	17
12.1 Deviations from the Study Plan	17
12.2 Deviations from the Guideline	17
13 RECORDING AND ARCHIVING	17

Study No.: 16020502G201

Final Report LAUS GmbH Test Item: (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1)

14	ANNEX 1: COPY OF GLP-CERTIFICATE	18
15	ANNEX 2: COMPOSITION OF M4-MEDIUM	19
16	ANNEX 3: CHROMATOGRAMS	20
16.1	Blank control 0h	20
16.2	Treatment 100 mg/L 0h	21
16.3	Blank control 48h	22
16.4	Treatment 100 mg/L 48h	23
18	ANNEX 4: ABBREVIATIONS	24
19	ANNEX 5: STATISTICAL CALCULATION USING TOXRAT® PROFESSIONAL 3.2 25	.1

page 5 of 33

3 SUMMARY

Title of Study:

Determination of short term toxicity of (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1) against *Daphnia magna* STRAUS according to OECD 202 resp. EU C.2

Findings and Results:

One valid experiment was performed.

The study was performed using 5 concentrations ranging from 4.6 to 100 mg/L. For each test concentration, 20 Daphnia were exposed to the test item for 48 hours in a static test system. After 24 and 48 hours, the immobilised Daphnia were counted.

Only the highest concentrated treatment 100 mg/L showed toxicity of 90% immobilisation. None of the animals were immobilised in the lower concentrated treatments and in the blank control.

Potassium dichromate $K_2Cr_2O_7$ (CAS No. 7778-50-9) was used as positive control in a current reference study. The 24h-EC50 value was determined as 1.6 mg/L, lying within the demanded range of 0.6 – 1.7 mg/L stated in the guideline.

At the beginning and at the end of the test, the content of the test item in the test solutions was determined using GC/FID-determination. The measured concentrations were in range of 82 - 114 % of the nominal concentration. Therefore, the determination of the biological results was based on the nominal concentrations.

The following results were determined for the test item (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1) (species: *Daphnia magna*).

48h-NOEC = 46 mg/L 48h-LOEC = 100 mg/L 24h-EC50 > 100 mg/L 48h-EC50 = 85 mg/L

4 PURPOSE AND PRINCIPLE OF THE STUDY

This study was performed in order to evaluate the toxic potential of (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1) towards freshwater flea, using the species *Daphnia magna* STRAUS, which was chosen in the guideline as a typical part of zoo-plankton.

Young Daphnia, aged less than 24 hours at the start of the test, were exposed to the test item at a range of concentrations for a period of 48 hours. Immobilisation was recorded after 24 hours and 48 hours and compared with control values. The results were analysed in order to calculate the EC50 at 48h and 24h.

A positive control was tested for EC50 determination as a means of assuring that the test conditions are reliable.

5 LITERATURE

The study was conducted in accordance with the following guidelines:

- OECD Guideline for Testing of Chemicals No. 202, adopted 13. Apr. 2004: "Daphnia sp., Acute Immobilisation Test"
- Commission Regulation (EC) No. 440/2008, Method C.2. "Daphnia sp. Acute Immobilisation Test", adopted 30. May 2008
- OECD guidance document no. 23, GUIDANCE DOCUMENT ON AQUATIC TOXICI-TY TESTING OF DIFFICULT SUBSTANCES AND MIXTURES, adopted 14. Dec. 2000
- •

Corresponding SOP of LAUS GmbH:

 SOP 118 002 01 "Bestimmung der akuten Toxizität von Substanzen gegenüber Daphnia magna STRAUS" version 12, valid from 04. Nov. 2013.

6 MATERIALS AND METHODS

6.1 Test Item

Designation in Test Facility:	16020502G
Date of Receipt:	05. Feb. 2016
Condition at Receipt	Room temperature, in proper conditions

6.1.1 Specification

The following information concerning identity and composition of the test item was provided by the sponsor.

Name	(9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine
	(1:1)
Batch no.	LV 16-026
Appearance	yellow fluid
Composition	100% (9Z)-9-Octadecenoic acid - N-
	cyclohexylcyclohexanamine (1:1)
CAS No.	22256-71-9
EINECS-No.	244-876-4
Molecular formula	$C_{12}H_{24}N C_{18}H_{33}O_2$
Molecular weight	463.8 g/mol
Purity	100% (gas chromatography)
Homogeneity	homogeneous
Volatility	unknown
Stability	H ₂ O: unknown; EtOH: not stated; acetone: not stated;
	CH ₃ CN: not stated; DMSO: not stated
Solubility	H ₂ O: 0.1-1g/L; EtOH: unknown; acetone: unknown
	CH ₃ CN: unknown; DMSO: unknown
Production date	02. Feb. 2016
Expiry date	02. Feb. 2017
Storage	Room Temperature (20 ± 5°C)
5	

6.1.2 Storage

The test item was stored in a closed vessel dark and dry at room temperature (15.2 - 23.3 °C.

6.1.3 Preparation

A saturated solution was prepared for the test. This was done by weighing the nominal load 100 mg/L (real load 100.8 mg/L) adding the corresponding amount of dilution water and shaking vigorously for 24 hours. The resulting solution was filtrated through 0.45 μ m nylon filters.

6.2 **Positive Control**

Potassium dichromate $K_2Cr_2O_7$ (CAS No. 7778-50-9) was used as positive control in a current reference study (15102901R201). The 24h-EC50 value was determined as 1.6 mg/L, lying within the demanded range of 0.6 – 1.7 mg/L stated in the guideline.

6.3 Test System

6.3.1 Specification	
Species	Daphnia magna
Variety	STRAUS
Strain	Berlin
Sex	female
Age	between 0 and 24 hours
Origin	Umweltbundesamt Berlin
In-house breeding since	27. September 2007

Selection of the test system was made following the proposal of the guidelines.

6.3.2 Animal Husbandry

Daphnia magna is bred in the LAUS GmbH throughout the year. The animals are kept for the use in toxicity tests. They multiply by parthenogenesis, thus being genetically identical. The husbandry is performed similar to the method described in the OECD guideline, following SOP 115 002 01 ("Zucht und Hälterung von *Daphnia magna* STRAUS"), Version 12.

Vessels	preserving glasses, nominal volume 2 L
Medium	M4-Medium (recipe of ELENDT), composition see Annex 2:
	Composition of M4-Medium, page 19
Food	unicellular green algae (Desmodesmus subspicatus)
Medium renewal	twice a week
Photo period	16/8 hours, using neon tubes
Temperature	20 ± 2 °C

6.4 Dilution Water

The dilution water stated below was used as daphnia medium during the test.

Deionised water with an enrichment of certain minerals (as demanded in the guidelines) is used in the test.

 Table 6.4-a
 Dilution water specification

Parameter	Concentration in mg/L
CaCl ₂ *2H ₂ O	293.80
MgSO ₄ *7H ₂ O	123.30
NaHCO ₃	64.80
KCI	5.80
Resulting hardness in mmol/L:	2.502
Resulting hardness in mg CaCO ₃ /L:	250

The real weighted loads are stated in the raw data.

Deviations from the nominal weighted loads were less than 5%.

6.5 Test Vessels

Beakers, glass, nominal volume 100 mL.

6.6 Instruments and Devices

The following instruments and devices were used in the performance of the study:

- Data logger for temperature
- Analytical scales Mettler Toledo XS 205 DU
- Precision scales Mettler Toledo XS6001S
- Adjustable pipettes with one-way tips, Mettler Toledo, Rainin
- Automatic repeater pipettes with one-way tips, Mettler Toledo, Rainin
- Glass measuring cylinders
- Glass measuring flasks
- pH-meter 340i wtw
- Oxygen meter Oxical 340i wtw
- Orbital Shaker GFL
- GC hp 6890

Usage and, if applicable, calibration of all instruments followed the corresponding SOP in the current edition.

Standard laboratory equipment (glassware) was also used.

6.7 Analytical Method

A GC/FID-Method for the determination of (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1) via determination dicyclohexylamine was validated. For the calibration, a dilution series in iso-hexane was prepared, using a stock solution. The GC-method was validated for the parameters specificity, stability, linearity, precision and limit of detection and quantification. Accuracy was tested in Daphnia test medium.

The method is fully described in validation report VB16020502G926. This document and the corresponding raw data is archived following GLP regulations.

Before the start of the test, a new calibration was performed. When measuring the samples from this study on day 2, validity of calibration was controlled by measuring of a QC sample at the concentration 30 mg/L. The measured concentration was 98 % of the nominal concentration.

All data are summarised in the following table:

Table 6.7-a	Validation Parameters determined during method validation (LAUS study No.
	16020502G926)

Parameter	Value	Unit
Linear Calibration Range (nominal)	5 – 70	mg/L
Slope	0.020879	1 / mg/L
Intercept y-axis	-0.016920	
Method variation coefficient (Precision)	1.51	%
Correlation coefficient r	0.999776	
Specificity	was given	-
Accuracy in Daphnia Test Medium (Conc. 4.5 mg/L)	75.9	%
Accuracy in Daphnia Test Medium (Conc. 46 mg/L)	85.0	%
Accuracy in Daphnia Test Medium (Conc. 100 mg/L)	95.8	%
Accuracy in Daphnia Test Medium (Conc. 4.5 - 46 mg/L)	80.5	%
Stability in Medium after 2 d (conc. 4.6 mg/L)	95.2	%
Stability in Medium after 2 d (conc. 100 mg/L)	94.6	%
LOD/LOQ	5.0	mg/L
LOD/LOQ*	0.5*	mg/L

* taking into account the tenfold enrichment of the samples

Parameter	Value	Unit
Linear Calibration Range (nominal)	5 – 70	mg/L
Slope	0.021835834	1 / mg/L
Intercept y-axis	-0.084049448	
Method variation coefficient (Precision)	1.98	%
Correlation coefficient r	0.999613587	

Table 6.7-b Parameters Calibration from 07. Jun. 2016

6.7.1 Sample Preparation (control, 4.6 mg/L and 10 mg/L nominal concentration)

To 100 mL test solution, 1 mL 2 M NaOH solution (for hydrolysis of ester) and 7 g NaCl was added, then, the solution was extracted two times with the solvent iso-hexane (2 * 4 mL), the organic phase was collected into a 10 mL flask, after drying with Na₂SO₄. The flask was filled up to 10 mL with iso-hexane after addition of 0.5 mL ISTD solution (1000 mg/L) and the solution was measured via GC/FID. Tenfold enrichment was achieved during the sample preparation.

6.7.2 Sample Preparation (22 mg/L and 46 mg/L nominal concentration)

To 50 mL demineralized water and 50 mL test solution, 1 mL 2 M NaOH solution (for hydrolysis of ester) and 7 g NaCl was added, then, the solution was extracted two times with the solvent iso-hexane (2 * 4 mL), the organic phase was collected into a 10 mL flask, after drying with Na₂SO₄. The flask was filled up to 10 mL with iso-hexane after addition of 0.5 mL ISTD solution (1000 mg/L) and the solution was measured via GC/FID. Fivefold enrichment was achieved during the sample preparation.

6.7.3 Sample Preparation (100 mg/L nominal concentration)

To 80 mL demineralized water and 20 mL test solution, 1 mL 2 M NaOH solution (for hydrolysis of ester) and 7 g NaCl was added, then, the solution was extracted two times with the solvent iso-hexane (2 * 4 mL), the organic phase was collected into a 10 mL flask, after drying with Na₂SO₄. The flask was filled up to 10 mL with iso-hexane after addition of 0.5 mL ISTD solution (1000 mg/L) and the solution was measured via GC/FID. Twofold enrichment was achieved during the sample preparation.

7 CONDUCT OF THE STUDY

7.1 Selection of Daphnia

19 hours before the start of the test, the adult animals were separated from the young. 0.5 hours before test start, the adults were caught with the help of a glass tube, and the newborn Daphnia, aged between 0 and 18 hours, were sieved from the medium and immediately placed into a 250 mL-beaker containing dilution water. After a settling-in period of 30 minutes, animals which showed no apparent damage were used for the test.

Switching from M4-medium (husbandry) to Dilution water (test) has been shown not to cause any detrimental effects for test Daphnia.

7.2 Study Performance

Using a glass tube, the Daphnia were caught and lifted from the beaker. They were put on a small sieve, and the medium surrounding the animals was sucked off using absorbent paper. Immediately after that, the animals were put into the respective test solution.

The test vessels were left to stand for 48 hours. After 24 and 48 hours, the immobilised Daphnia were counted. Daphnia are considered immobilised if they perform no movements or are only able to move their antennae when the beaker is gently agitated. Daphnia which are trapped at the surface of the test solution are also considered immobilised.

The pH, the concentration of dissolved oxygen and the content of the test item in the test vessels were measured at the beginning and at the end of the test.

7.3 Experimental Conditions

Date of performance	07. – 09. Jun. 2016
Treatments	100 / 46 / 22 / 10 / 4,6 mg/L
Temperature	20.3 – 21.8 °C
Duration	48 hours
Observation times	24 and 48 hours
Test vessels	glass beakers, nominal volume 100 mL, tall shape
Treatments	4 vessels, each containing 60 mL test solution and 5 Daphnia
Blank control	4 vessels, each containing 60 mL dilution water and 5 Daphnia

8 **FINDINGS**

8.1 Immobility

In the blank control, none of the Daphnia were immobilised (see table below).

Table 8.1-a Immobility

Nominal Concentra-	Imr	Immobility 24 hours			Immobility 48 hours					
tion in mg/L	abs	absolute			in %	absolute			in %	
Blank control	0	0	0	0	0	0	0	0	0	0
4.6	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0
46	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	4	4	5	5	90

8.2 pH and O₂

The pH values in the test media and the blank control and the concentration of dissolved oxygen are given in the following tables:

Table 8.2-apH and O2-values

Nominal Concentration	рН		O ₂ -Concentration in mg/L		
in mg/L	0 h	48 h	0 h	48 h	
Blank control	7.6	7.8	9.3	9.0	
4.6	7.6	7.8	9.4	9.0	
10	7.6	7.8	9.5	8.9	
22	7.6	7.8	9.5	8.9	
46	7.6	7.8	9.4	8.9	
100	7.7	7.8	9.3	8.7	

8.3 Analytical Determinations

The measured concentrations were in a range between 82 % and 114 % of the nominal concentration. Therefore, the determination of the biological results was based on the nominal concentrations.

The measured concentrations for treatment and control are given in the following table:

Nominal Concentration Test Item	Measured Concentration t = 0 h	% of Nominal t = 0 h	Measured Concentration t = 48 h	% of Nominal t = 48 h
mg/L	mg/L	%	mg/L	%
Blank control	n. d.		n. d.	
4.6	4.74	103	3.77	82
10	11.36	114	10.19	102
22	24.24	110	18.98	86
46	48.33	105	39.01	85
100	92.68	93	104.22	104

 Table 8.3-a
 Measured Concentrations

n. d. = not detectable

9 RESULTS AND STATISTICS

The estimation of the biological results was accomplished using the software ToxRat® Professional, version 3.2.1. The details of calculation are stated in the annex 5, page 25. Biological results are stated using two significant digits.

9.1 Biological Results Test Item

The biological results are presented in the following table:

 Table 9.1-a
 Biological Results Test Item

Parameter	Value	95% confidence interval
24h EC50	> 100 mg/L	n. d.
48h EC50	85 mg/L	n. d.
48h NOEC	46 mg/L	
48h LOEC	100 mg/L	

10 VALIDITY

- Immobilisation in the controls may not exceed 10 %.
 Immobilisation in the controls was 0 %.
- The concentration of dissolved oxygen at the end of the test must be at least 3 mg/L. The lowest concentration of dissolved oxygen at the end of the test was 8.7 mg/L.
- The pH-value in the test solutions should not vary by more than 1.5 units during the test.

The highest variation was 0.2 units.

11 DISCUSSION

The study was performed using 5 concentrations ranging from 4.6 to 100 mg/L. 20 Daphnia were exposed to the test item for the treatment for 48 hours in a static test system.

Only the highest concentrated treatment 100 mg/L showed toxicity of 90% immobilisation. None of the animals were immobilised in the lower concentrated treatments and in the blank control.

At the beginning and at the end of the test, the content of the test item in the test solutions was determined using GC/FID -determination. The measured concentrations were in range of 82 - 114 % of the nominal concentration. Therefore, the determination of the biological results was based on the nominal concentration.

Potassium dichromate $K_2Cr_2O_7$ (CAS No. 7778-50-9) was used as positive control in a current reference study. The 24h-EC50 value was determined as 1.6 mg/L, lying within the demanded range of 0.6 – 1.7 mg/L stated in the guideline.

No observations were made which might cause doubts concerning the validity of the study outcome. All validity criteria were met.

The result of the test is considered valid.

12 DEVIATIONS

12.1 Deviations from the Study Plan

The following deviation was documented:

• 100 mL glass beakers were used instead of 50 mL glass beakers. Theis deviation can be stated as meaningless.

The deviation was assessed and signed by the study director on 22. Jul. 2016.

12.2 Deviations from the Guideline

None.

13 RECORDING AND ARCHIVING

One original of study plan and final report, respectively, all raw data of the study and all documents mentioned or referred to in study plan or final report will be kept in the GLP Document Archive of the test facility for 15 years. After that, the sponsor's instructions will be applied (destruction of documentation) A retain sample of the test item will be kept in the GLP Substance Archive for 15 years; then, the retain sample will be discarded.

Number of originals which will be sent to the sponsor: 1

14 ANNEX 1: COPY OF GLP-CERTIFICATE

Parameter	Concentration	
CaCl ₂ *2H ₂ O	293.80	mg/L
MgSO ₄ *7H ₂ O	123.30	mg/L
NaHCO ₃	64.80	mg/L
KCI	5.80	mg/L
NaNO ₃	274	µg/L
K ₂ HPO ₄	184	µg/L
KH ₂ PO ₄	143	µg/L
Na ₂ SiO ₃ *9H ₂ O	10	mg/L
H ₃ BO ₃	2.8595	mg/L
Na ₂ EDTA*2H ₂ O	2.5	mg/L
FeSO ₄ *7H ₂ O	0.9955	mg/L
MnCl ₂ *4H ₂ O	0.3605	mg/L
LiCI	0.306	mg/L
SrCl ₂ *6H ₂ O	0.152	mg/L
RbCl	0.071	mg/L
Na ₂ MoO ₄ *2H ₂ O	0.0615	mg/L
CuCl ₂ *2H ₂ O	16.75	µg/L
NaBr	16	µg/L
ZnCl ₂	13	µg/L
CoCl ₂ *6H ₂ O	10	µg/L
KI	3.25	µg/L
Na ₂ SeO ₃	2.19	µg/L
NH ₄ VO ₃	0.575	µg/L
ThiaminHCI	75	µg/L
Cyanocobalamin	1	µg/L
D+Biotin	0.75	µg/L

15 ANNEX 2: COMPOSITION OF M4-MEDIUM

Real weighted loads are stated in the raw data.

Deviations from the nominal weighted loads were less than 5%.

Deionised water is used as base of M4.

16 ANNEX 3: CHROMATOGRAMS

16.1 Blank control 0h

19 16020502G201_0h_BW						
16020502G201_0h_BW 10	Injection Volume: Channel:	1,0 FID				
unknown	Wavelength:	n.a.				
16020502G	Bandwidth:	n.a.				
7.6.2016 20:56	Sample Weight:	1,0000				
	D2G201_0h_BW 16020502G201_0h_BW 10 unknown 16020502G 16020502G 16020502G 7.6.2016 20:56 13.50	D2G201_0h_BW 16020502G201_0h_BW 10 unknown 16020502G 16020502G 16020502G 16020502G 7.6.2016 20:56 Sample Weight: 13.50 Sample Amount: 16020502G 13.50 10 10 10 10 10 10 10				

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		pA	pA*s	%		
1	8,42	ISTD	56271,047	881,143	99,30	n.a.	BMB
Total:			56271,047	881,143	99,30	0,000	

16.2 Treatment 100 mg/L 0h

29 1602050	2G201_0h_100		
Sample Name: Vial Number:	16020502G201_0h_100 15	Injection Volume: Channel:	1,0 FID
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	16020502G	Bandwidth:	n.a.
Quantif. Method:	16020502G	Dilution Factor:	1,0000
Recording Time: Run Time (min):	8.6.2016 0:43 13,50	Sample Weight: Sample Amount:	1,0000 1,0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		pA	pA*s	%		
1	7,19	Dicyclohexylamin	80551,625	1238,388	59,00	n.a.	BMB
3	8,42	ISTD	54660,367	851,543	40,57	n.a.	BMB
Total:			135211,992	2089,931	99,57	0,000	

16.3 Blank control 48h

-2.000-

0,0

2,0

4,0

Sample Name: 16020502G201_2d_BW Injection Volume: 1,0 Vial Number: 8 Channel: FID Sample Type: unknown Wavelength: n.a. Control Program: 16020502G Bandwidth: n.a. Quantif. Method: 16020502G Dilution Factor: 1,0000 Recording Time: 9.6.2016 18:35 Sample Amount: 1,0000 Run Time (min): 13,50 Sample Amount: 1,0000 60.000 16020502G201 02 #4 16020502G201 2d #4 50.000 1 1 1 1 9A 1 1 1 1 10.000 1 1 1 1 10.000 1 1 1 1	4 1602050	2G201_2d_BW		
60.000 16020502G201 02 #4 16020502G201 2d BW FID pA 1-ISTD - 8,418 50.000 40.000 20.000 10.000	Sample Name: Vial Number: Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	16020502G201_2d_BW 8 unknown 16020502G 16020502G 9.6.2016 18:35 13,50	Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	1,0 FID n.a. n.a. 1,0000 1,0000 1,0000
1-ISTD - 8,418 50.000- 40.000- 30.000- 20.000- 10.000-	60.000 16020502G	201_02 #4 16020502G201_2d_BW		FID
	50.000- 40.000- 30.000- 20.000-		1 - ISTD - 8,418	

No.	Ret.Time min	Peak Name	Height pA	Area pA*s	Rel.Area %	Amount	Туре
1	8,42	ISTD	56057,023	865,827	99,54	n.a.	BMB
Total:			56057,023	865,827	99,54	0,000	

6,0

8,0

min

13,5

12,0

10,0

16.4 Treatment 100 mg/L 48h

14 16020502G201_2d_100 Sample Name: 16020502G201_2d_100 Injection Volume: 1.0 Vial Number: 13 Channel: FID Sample Type: unknown Wavelength: n.a. Control Program: Bandwidth: 16020502G n.a. Dilution Factor: Quantif. Method: 16020502G 1,0000 Recording Time: Sample Weight: 9.6.2016 22:22 1,0000 Run Time (min): 13,50 Sample Amount: 1,0000 16020502G201 02 #14 16020502G201 2d 100 FID 60.000nA Dicyclohel6/TDni8,417188

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		pA	pA*s	%		
1	7,19	Dicyclohexylamin	89373,977	1452,107	61,64	n.a.	BMB
3	8,42	ISTD	56736,820	894,765	37,98	n.a.	BMB
Total:			146110,797	2346,872	99,62	0,000	

18 ANNEX 4: ABBREVIATIONS

- LOEC Lowest concentration of the test item where more than 10 % of the daphnia were immobilised
- NOEC Highest concentration of the test item where less than 10 % of the daphnia were immobilised
- 24h-EC50 Concentration of the test item causing 50% immobility within 24 hours.
- 48h-EC50 Concentration of the test item causing 50% immobility within 48 hours.

19 ANNEX 5: STATISTICAL CALCULATION USING TOXRAT® PROFESSIONAL 3.2.1

Daphnia, Acute Immobilis	ation Test (OECD 202-2004): 16020502G201
General	
Test identification/project no	16020502G201
Test item	100200020201
Unit of test item concentration	ma/L
Start of experiment on day	
Date and time of the evaluation	13.06.2016: 10:14:47
Raw data filename:	OECD202 Daphnia AcuteTest 20041 xls
Test design	
Number of treatments (incl. control(s))	6
Duration of the test	48 h
Measurement interval	
Measurement variable	Immobility
Test system	Daphnia magna
Statistical design	Hypothesis testing (NOEC) and regression (LCx)
To be a valid test, a maximum control mor In the present test 0,0% of the introduced a Thus the test is valid.	tality of 10% is allowed. animals died.
1600060202011 / Tast itom: tast itom: / Date: 12.06	046-10-15-28 h
1002000202017 reschem: lest ilem 7 Dale: 13.06.2	ToxRatPro Version 3.2.1@ - Page 1 of 9

Tab. 1: Summary of Res as observed Confidence	f Results for all I f Results for all at end of expe limits; LOEC: L	Endpoints Endpoints rimental ti owest obs	tts at the E at the End of me; LC: Effec erved effect c	nd of Expo Exposure Peri tive concentration; N	sure Perio iod: Critical et tion for xx% re NOEC: No ob	d ffect and threshold eduction; 95%-CL served effect cond	d concentration 95% centration.
Critical Conc.s [m	ig/L]						
Immobility							
	LC10	72,2	297				
95%-CL	lower	r	n.d.				
	upper	r	n.d.				
	LC20	76,4	36				
95%-CL	lower	r	n.d.				
	upper	r	n.d.				
	LC50	85,0)27				
95%-CL	lower	r	n.d.				
	upper	r	n.d.				
Immobility	LOEC	100,0	000				
	NOEC	40.0	000				
d.: not determined du mmobility (Da	e to mathematica	40,0 I reasons o	r inappropriate o	lata			
nd.: not determined du mmobility (Da mmobility of Da Tab. 2: Immobility of	ta) taphnia magr	treasons or a as De	r inappropriate of pendent o endent on cor	lata n Concentr iccentration of th	ation and he test item a	Time nd time (from Inpu	utRawData)
nd.: not determined du mmobility (Da mmobility of Da Tab. 2: Immobility of Freatm. [mg/L] C	ta) aphnia magr of Daphnia mag	40,0 I reasons of na as De na as dep 4,600	pendent o endent on cor 10,000	n Concentr icentration of the 22,000	ation and he test item a 46,000	Time nd time (from Inpu 100,000	utRawData)
nd.: not determined du mmobility (Da mmobility of Da Tab. 2: Immobility of Freatm. [mg/L] C 0 h	ta) aphnia magr of Daphnia mag control	I reasons or na as De na as depu 4,600 5	pendent o endent on cor 10,000 5	n Concentr icentration of the 22,000 5	ation and he test item a 46,000 5	Time nd time (from Inpu 100,000 5	utRawData)
d.: not determined du mmobility (Da mmobility of Da Tab. 2: Immobility of Ireatm. [mg/L] C 0 h	ta) aphnia magr of Daphnia mag control 5 5	I reasons or na as De na as depu 4,600 5 5	pendent o endent on cor 10,000 5 5	n Concentr centration of th 22,000 5 5 5	ation and he test item a 46,000 5 5	Time nd time (from Inpu 100,000 5 5	utRawData)
nd.: not determined du mmobility (Da mmobility of Da Tab. 2: Immobility of Greatm. [mg/L] C 0 h	ta) aphnia magr of Daphnia mag control 5 5 5	46,U I reasons of na as De na as dep 4,600 5 5 5 5	r inappropriate of endent on cor 10,000 5 5 5 5 5	n Concentr ccentration of th 22,000 5 5 5 5 5 5	ation and ⁷ he test item a 46,000 5 5 5 5	Time nd time (from Inpu 100,000 5 5 5 5	utRawData)
d.: not determined du mmobility (Da mmobility of Da Tab. 2: Immobility of Freatm. [mg/L] C 0 h	aphnia magr f Daphnia magr f Daphnia magr f ontrol 5 5 5 5 5 5	46,U I reasons of na as De na as depr 4,600 5 5 5 5 5 5	pendent o endent on cor 10,000 5 5 5 5 5 5	n Concentr icentration of th 22,000 5 5 5 5 5 5 5	ation and he test item a 46,000 5 5 5 5 5 5	Time nd time (from Inpu 100,000 5 5 5 5 5 5	utRawData)
nd.: not determined du mmobility (Dar mmobility of Da Tab. 2: Immobility of Greatm. [mg/L] C 0 h Cotal Introduced	ta) aphnia magr of Daphnia mag ontrol 5 5 5 5 5 20	46,U I reasons of na as De na as depr 4,600 5 5 5 5 5 5 5 20	r inappropriate o endent on cor 10,000 5 5 5 5 5 5 5 20	data n Concentr iccentration of th 22,000 5 5 5 5 5 5 20	ation and the test item a 46,000 5 5 5 5 5 5 5 20	Time nd time (from Inpu 100,000 5 5 5 5 5 20	utRawData)
nd.: not determined du mmobility (Dar mmobility of Da Tab. 2: Immobility of Treatm. [mg/L] C 0 h - otal Introduced n:	ta) aphnia magr of Daphnia magr fontrol 5 5 5 5 20 4	46,U I reasons of na as De na as depr 4,600 5 5 5 5 5 5 5 20 4	r inappropriate of endent on cor 10,000 5 5 5 5 5 5 5 20 4	data n Concentr iccentration of th 22,000 5 5 5 5 5 20 4	ation and the test item a 46,000 5 5 5 5 5 5 5 20 4	Time nd time (from Inpu 100,000 5 5 5 5 5 20 4	utRawData)
.d.: not determined du mmobility (Da mmobility of Da Tab. 2: Immobility of reatm. [mg/L] C 0 h	aphnia magr of Daphnia magr of Daphnia magr 5 5 5 5 5 5 20 4	46,U I reasons of na as De na as dep 4,600 5 5 5 5 5 5 20 4	r inappropriate of endent on cor 10,000 5 5 5 5 5 5 20 4	n Concentr icentration of th 22,000 5 5 5 5 5 20 4	ation and he test item a 46,000 5 5 5 5 5 20 4	Time nd time (from Inpu 100,000 5 5 5 5 5 20 4	utRawData)

InputRawDat	a)					
24 h	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
otal Immobile:	0	0	0	0	0	0
n:	4	4	4	4	4	4
48 h	0	0	0	0	0	4
	0	0	0	0	0	4
	0	0	0	0	0	5
	0	0	0	0	0	5
otal Immobile:	0	0	0	0	0	18
n:	4	4	4	4	4	4
	1.0- 0 0.9- 0.8- 0.7-					 Control 4,600 mg/L 10,000 mg/L ₹ 22,000 mg/L 46,000 mg/L -> 100,000 mg/L
Fraction Survived	1.0- 0 0.9- 0.7- 0.6- 0.5- 0.5- 0.4- 0.3- 0.2- 0.1-					 Control 4,600 mg/L 10,000 mg/L 22,000 mg/L 46,000 mg/L -> 100,000 mg/L
Fraction Survived	1.0-0 0.9 0.8 0.7 0.6 0.4 0.4 0.4 0.2 0.2 0.1 0.0 0 0 0		24 Time [h]			 Control 4,600 mg/L 10,000 mg/L 22,000 mg/L 46,000 mg/L -> 100,000 mg/L
Fig. 1: Immobility o	1.0-0 0.8 0.8 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ed Daphnia	24 Time [h] magna as o	bserved under	er presence	Control 4.600 mg/L 22.000 mg/L 46.000 mg/L 46.000 mg/L 0.100.000 mg/L
Fig. 1: Immobility o .ethal Concenti Dverview Immob Tab. 3: Overview Imm Treatm.[mg/L]Tot	1.0-0 0.0-1 0.	ed Daphnia Ex) for Imr ew over the e	24 Time [h] magna as o mobility a	bserved under	er presence	Control 4.600 mg/L 22.000 mg/L 46,000 mg/L 46,000 mg/L 46,000 mg/L of the test item.
Fig. 1: Immobility o ethal Concentr Dverview Immob Tab. 3: Overview Imr Treatm.[mg/L]Tot: Control	1.0-0 0.8- 0.8- 0.6- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.5- 0.4- 0.5- 0.4- 0.5- 0.4- 0.5- 0.4- 0.5- 0.4- 0.4- 0.5- 0.4-	ed Daphnia EX) for Imr ew over the e I Mobile 20	24 Time [h] magna as o mobility a	bserved under t 24 h nobility in Dap nobile % I	hnia magna a mmobility 0,0	Control 4.600 mg/L 22.000 mg/L 46.000 mg/L 46.000 mg/L 0.000 mg/L 0.000 mg/L 0.000 mg/L
Fig. 1: Immobility o .ethal Concentu Dverview Immob Tab. 3: Overview Imm Treatm.[mg/L]Tot: Control 4,600	1.0-0 0.9- 0.8- 0.6- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.4- 0.5- 0.4- 0.4- 0.5- 0.4-	ed Daphnia Ex) for Imr ew over the e I Mobile 20 20	24 Time [h] magna as o mobility a	bserved under t 24 h nobility in Dap nobile % I 0 0	hnia magna a mmobility 0,0 0,0	Control 4.600 mg/L 22.000 mg/L 46.000 mg/L 46.000 mg/L 0.100.000 mg/L 0.100.000 mg/L

Final ReportStudy No.: 16020502G201LAUS GmbHTest Item: (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1)

22,000	20	20		0 0	0,0	
46,000	20	20		0 0	0,0	
100,000	20	20		0 0),0	
Because no chan	ge in immobility was to	be observed	l, no furth	er computations	have been per	formed for 24 h
		I		- In		
Lethal Conce	ntrations (LCX) to	r immobili	ty at 46	n		
Overview Imm	obility					
Tab. 4: Overview	Immobility: Overview ove	er the effects o	n immobilit	ty in Daphnia mag	na at 48 h	
Treatm.[mg/L]1	otal Introduced	lobile	Immobil	e % Immobil	ity	
Control	20	20		0 0	0,0	
4,600	20	20		0 0	0,0	
10,000	20	20		0 0	0,0	
22,000	20	20		0 0	0,0	
46,000	20	20		0 0),0	
100,000	20	2	1	8 90	0,0	
Drobit analysis	using linear may	likalihaad r	ogracel	on		
Tab. 5: Probit ana /response	alysis using linear max. lik function; data is shown v	kelihood regres	ssion with i the probit a	immobility at 48 h: analysis; Log(x): lo	Determination o ogarithm of the co	f the concentration oncentration; n:
number of	organisms; Emp. Probit:	empirical prot	oit; Reg. P	robit: calculated p	robit for the final	function.
Treatm. [mg/L]	Log(x) % Imi	mobility	n E	mp. Probit	weight	Reg. Probit
Control	0.662	0,0	20	1 0522	0.000	excluded
4,600	0,003	0,0	20	-1,2000	0,000	-4,753
22 000	1,000	0,0	20	-1,2533	0,000	-4,753
46,000	1,663	0,0	20	-1,2000	0,000	-4,733
	1.000	U.U.	20	-1,2000	0,001	-4,000
100,000	2,000	90.0	20	1 0027	6 844	1 282
100,000 200,000 xalue not ir	2,000	90,0	20	1,0027	6,844	1,282
100,000 excluded: value not ir	2,000 line with the chosen function	90,0	20	1,0027	6,844	1,282
100,000 excluded: value not in	2,000 line with the chosen function the probit analysis	90,0	20	1,0027	6,844	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 line with the chosen function the probit analysis v Parameter	90,0 on vith immobility	20 at 48 h: Re	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 accluded: value not ir Parameters of Tab. 6: Paramete	2,000 time with the chosen function the probit analysis rs of the probit analysis v Parameter Computation runs:	90,0 on vith immobility	20 at 48 h: Re /alue 16	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 time with the chosen function the probit analysis were read to the probit analysis were Parameter Computation runs: Slope b:	90,0 on vith immobility	20 at 48 h: Re /alue 16 9318	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 line with the chosen function the probit analysis of Parameter Computation runs: Slope b: Intercept a:	90,0 n vith immobility 18,1 -35.1	20 at 48 h: Re /alue 16 9318 0481	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 line with the chosen function the probit analysis rs of the probit analysis v Parameter Computation runs: Slope b: Intercept a: Variance of b:	90,0 in vith immobility 18,1 -35,1 10,701.0	20 at 48 h: Ro /alue 16 9318 0481 04297	1,0027	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 line with the chosen function the probit analysis of Parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit	90,0 in vith immobility 18,1 -35,1 10.701,0	20 at 48 h: Ro /alue 16 9318 0481 04297	1,0027	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 line with the chosen function the probit analysis of Parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit Chi ² :	90,0 in vith immobility 18,1 -35,1 10.701,0 0,0	20 at 48 h: Ro /alue 16 9318 0481 04297	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 time with the chosen function the probit analysis of parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit Chi ² : Degrees of freedom	90,0 in vith immobility 18,1 -35,1 10.701,0	20 at 48 h: Re /alue 16 9318 0481 04297 00001 3	1,0027	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 time with the chosen function the probit analysis of parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit Chi ² : Degrees of freedom p(Chi ²):	90,0 in vith immobility 18,1 -35,1 10.701,c 0,0	20 at 48 h: Re /alue 16 9318 0481 04297 00001 3 1,000	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 line with the chosen function the probit analysis of Parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit Chi ² : Degrees of freedom p(Chi ²): Log LC50:	90,0 in vith immobility 18,1 -35,1 10.701,c 0,0	20 at 48 h: Re /alue 16 9318 0481 04297 00001 3 1,000 02956	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 line with the chosen function the probit analysis of Parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit Chi ² : Degrees of freedom p(Chi ²): Log LC50: SE Log LC50:	90,0 in vith immobility 18,1 -35,1 10.701,0 0,0 : 1,9 0,4	20 at 48 h: Rd /alue 16 9318 0481 04297 00001 3 1,000 02956 00085	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 2,000 line with the chosen function the probit analysis of Parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit Chi ² : Degrees of freedom p(Chi ²): Log LC50: SE Log LC50: g-Criterion:	90,0 90,0 vith immobility 18,1 -35,1 10.701,0 0,0 : 1,9 0,4 124.1	20 at 48 h: Ro /alue 16 9318 0481 04297 00001 3 1,000 12956 0085 9525	1,0027 esults of the regre	6,844 ssion analysis	1,282
100,000 excluded: value not ir Parameters of Tab. 6: Paramete	2,000 2,000 The with the chosen function the probit analysis of Parameter Computation runs: Slope b: Intercept a: Variance of b: Goodness of Fit Chi ² : Degrees of freedom p(Chi ²): Log LC50: SE Log LC50: g-Criterion: F:	90,0 in vith immobility 18,1 -35,1 10.701,0 0,0 :	20 at 48 h: Re /alue 16 9318 0481 04297 00001 3 1,000 02956 0085 9525 7,023	1,0027 esults of the regre	6,844 ssion analysis	1,282

round the computed dose/response function. In this case and with quantal data, confidence limits are corrected for heterogeneity (extra-binomial variance).

A statistically significant concentration/response was found ($p(F) \le 0.05$; i.e. slope of the relationship is significantly different from zero).

Results of the probit analysis

Tab. 7: Results of the probit analysis with immobility at 48 h: Selected effective concentrations (LCx) of the test item and their 95%-confidence limits (according to Fieller's theorem).

Toxicity Metric	LC10	LC20	LC50
Value [mg/L]	72,297	76,436	85,027
lower 95%-cl	n.d.	n.d.	n.d.
upper 95%-cl	n.d.	n.d.	n.d.

n.d.: not determined either due to mathematical reasons or value is beyond the tested concentrations by more than factor 1000.

Slope function after Litchfield and Wilcoxon: 1,135

(The slope function is derived from the slope, b, of the linearized probit function and computes as $S = 10^{(1/b)}$; please note that small values refer to a steep concentration/response relation and large ones to a flat relation.)

Fig. 2: Concentration-effect curve showing the influence of the test item on immobility of the introduced Daphnia magna as observed after 48 h

Overview over the LCs of the Test Item on Immobility

Increase in Immobility

Treatment	-	0-2	0-48 h	
[mg/L]	м	%М	М	%М
Control	20,0	0,0	20,0	0,0
4,600	20,0	0,0	20,0	0,0
10,000 16020502G201 / Test item:	20,0 test item /	0.0 Date: 13.06	.2016;"10:1	5:38 h ^{0,0}

ToxRatPro Version 3.2.1@ - Page 5 of 9

22,000	20,0	0,0	20,0	0,0			
46,000	20,0	0,0	20,0	0,0			
100,000	20,0	0,0	2,0	90,0			
LC10	0,000	*	72,297	*pm			
lower 95%-cl	0,000		n.d.				
upper 95%-cl	0,000		n.d.				
LC20	0,000	*	76,436	*pm			
lower 95%-cl	0,000		n.d.				
upper 95%-cl	0,000		n.d.				
LC50	0,000	*	85,027	*pm			
lower 95%-cl	0,000		n.d.				
upper 95%-cl	0,000		n.d.				
justify the use of t s performed.	he Step-dov	s (NOI wn Cocł	EC) for Ir	nmobility a	t 24 h a trend analysis by	contrasts using p	roportions
a justify the use of t as performed. ualitative Trend ab. 9: Qualitative tre of proportions probability tha linear contrast	he Step-dow Analysis I nd analysis I weighted by t the trend is is significan Psi	s (NOI wn Coch by Cor by Contrasi due to c t.	EC) for Ir nran-Armita ntrasts (M nsts (monoto ts; Var(psi): chance (Ho: Var(psi)	nmobility a age test at first onotonicity nicity of concer variance of psi; Slope = 0). Hyp df	t 24 h a trend analysis by of Concentration tration/response) with df: degrees of freedo othesis of monotonic Chi²	r contrasts using p n/ Response) h immobility at 24 h: m; Chi ² : Chi ² -statis ity is accepted if at l n(Chi ²)	roportions Psi: total iic; p(Chi²): east the
ireshold conce justify the use of t s performed. ialitative Trend ab. 9: Qualitative tre of proportions probability tha linear contrast Trend	he Step-dow Analysis I nd analysis I weighted by t the trend is is significan Psi 0 0000	s (NOI wn Coch by Cor by contrasi due to c t.	EC) for Ir hran-Armita htrasts (M asts (monoto ts; Var(psi): chance (Ho: Var(psi) 0.0000	nmobility a age test at first onotonicity nicity of concer variance of psi; Slope = 0). Hyp df	t 24 h a trend analysis by of Concentratio tration/response) wit df: degrees of freedo othesis of monotonic Chi ² NAN	r contrasts using p n/Response) h immobility at 24 h: m; Chi ² : Chi ² -statis ity is accepted if at l p(Chi ²) 1.000	roportions Psi: total iic; p(Chi²): east the
justify the use of t s performed. allitative Trend ab. 9: Qualitative tre of proportions probability tha linear contrasi Trend Linear Quadratic	Analysis I Analysis I and analysis I weighted by t the trend is is significan Psi 0,0000 0 0000	s (NOI wn Coch by Cor by contrast due to c t.	EC) for Ir nran-Armita ntrasts (M asts (monoto ts; Var(psi): chance (Ho: Var(psi) 0,0000 0,0000	nmobility a age test at first onotonicity nicity of concer variance of psi; Slope = 0). Hyp df 5	t 24 h a trend analysis by of Concentration tration/response) wit df: degrees of freedo othesis of monotonic Chi ² NAN NAN	r contrasts using p n/Response) h immobility at 24 h: m; Chi ² : Chi ² -statis ity is accepted if at l p(Chi²) 1,000 1 000	roportions Psi: total lic; p(Chi²): east the
hreshold conce o justify the use of t as performed. ualitative Trend Tab. 9: Qualitative tre of proportions probability tha linear contrast Trend Linear Quadratic	Analysis I Me Step-dov Analysis I Meighted by t the trend is is significan Psi 0,0000 0,0000	s (NOI wn Coch by Cor by contrast due to c t.	EC) for Ir nran-Armita htrasts (M asts (monoto ts; Var(psi): chance (Ho: Var(psi) 0,0000 0,0000	nmobility a age test at first onotonicity variance of psi; Slope = 0). Hyp df 5 5	t 24 h a trend analysis by of Concentratio tration/response) wit df: degrees of freedo othesis of monotonic Chi² NAN NAN	r contrasts using p n/Response) h immobility at 24 h: m; Chi ² : Chi ² -statis ity is accepted if at l p(Chi²) 1,000 1,000	Psi: total ic; p(Chi ² east the
hreshold conce o justify the use of t as performed. ualitative Trend Tab. 9: Qualitative tre of proportions probability tha linear contrast Trend Linear Quadratic the linear trend is no the analysis of contr placed by the Bonf	Analysis he Step-dow Analysis b md analysis b weighted by t the trend is is significant 0,0000 0,0000 ot significant asts did not erroni Fishe	s (NOI wn Coch by Con by contrast due to c t. c (p > 0,1 r reveal r test.	EC) for Ir nran-Armita ntrasts (M nasts (monoto ts; Var(psi): shance (Ho: Var(psi) 0,0000 0,0000 0,0000 0,0000 05) The qui a linear tree	nmobility a age test at first onotonicity nicity of concer variance of psi; Slope = 0). Hyp df 5 adratic trend is nd, thus the se	t 24 h a trend analysis by of Concentration tration/response) wit df: degrees of freedo othesis of monotonic Chi ² NAN NAN not significant (p > lected Step-down ()	r contrasts using p h immobility at 24 h m; Chi ² : Chi ² -statis ity is accepted if at l p(Chi²) 1,000 1,000 • 0,05) Cochran-Armitage	Psi: total ic; p(Chi²): east the test was

		0						
Treatm.[mg/L] Intr	oduced	Mobile	Immobile	% Immobility	р	Alpha*	sign.	
Control	20	20	0	0,0				
4,600	20	20	0	0,0	1,000	0,050	-	
10,000	20	20	0	0,0	1,000	0,025	-	
22,000	20	20	0	0,0	1,000	0,017	-	
46,000	20	20	0	0,0	1,000	0,013	-	
100,000	20	20	0	0,0	1,000	0,010	-	
to also ifferente conservational	Const							

+: significant; -: non-significant

The NOEC appears to be higher than or equal 100,000 mg/L.

Tebresheeld/concentrations=(NOIEC)/for:Immobility at 48 h

ToxRatPro Version 3.2.1@ - Page 6 of 9

To justify the use of the Step-down Cochran-Armitage test at first a trend analysis by contrasts using proportions was performed.

Tab. 11: Qualitative trend analysis by contrasts (monotonicity of concentration/response) with immobility at 48 h: Psi: total of proportions weighted by contrasts; Var(psi): variance of psi; df: degrees of freedom; Chi²: Chi²-statistic; p(Chi²): probability that the trend is due to chance (Ho: Slope = 0). Hypothesis of monotonicity is accepted if at least the linear contrast is significant.

Trend	Psi	Var(psi)	df	Chi ²	p(Chi²)
Linear	4,5000	0,1125	5	180,000	<0.001
Quadratic	4,5000	0,1125	5	180,000	<0.001

The linear trend is significant (p <= 0,05) The quadratic trend is significant (p <= 0,05)

The analysis of contrasts revealed a linear trend, thus the selected Step-down Cochran-Armitage test was performed.

Ahead of the Cochran-Armitage test Tarone's test had to be performed to test for extra-binomial variance.

Tarone's Test Procedure

Tab. 12: Tarone Test with immobility at 48 h: Treatment-wise testing the homgeneity of proportions (Alpha = 0,010). The statistic TZ has an asymptotic chi² distribution with one degree of freedom and measures the deviation from homogeneity. Ho (Phi = 0; i.e. homogeneity) is accepted, if the probability p(TZ) > Alpha; p(TZ) is the probability that the deviation from homogeneity observed in the treatment(s) is due to chance.

Treatm.[mg/L] I	ntroduced	Mobile	Immobile	TZp(TZ)	sign.	
Control	20	20	0	2,5000,114	-	
4,600	20	20	0	2,5000,114	-	
10,000	20	20	0	2,5000,114	-	
22,000	20	20	0	2,5000,114	-	
46,000	20	20	0	2,5000,114	-	
100,000	20	2	18	0,4940,482	-	

+: significant; -: non-significant

Si

In treatments no signs of extra-bionmial variance were found.

Step-down Cochran-Armitage Test Procedure

Tab. 13: Step-down Cochran-Armitage Test Procedure with immobility at 48 h: Step-down test to detect an increasing trend in responses (Alpha is 0,050; one-sided greater); Chi²(tot): total (Pearson) Chi²; z(trend): standardized one-sided deviation due to the linear upward trend; Chi²(er): unexplained component of Chi²(tot); p(tot|trend|err): probabilities that the observed results could be due to chance; Ho (no trend) is accepted, if p(trend) > Alpha. Note that the step-down test terminates after the first non-significant treatment is encountered
Treatm. [mg/l.]Total IntroducedImmobile% ImmobilityChi²(tot)p(tot)Chi²(err) = p(err)[z](trend)p(trend)

gn.		otarm	liouu	ocumino 5		obilityon	(101)p(10		P(cir)		(a chu)
	Control	20	0	0,0							
	4,600	20	0	0,0	0,000	1,000	0,000	<0.001	0,000	1,000	-
	10,000	20	0	0,0	0,000	1,000	0,000	<0.001	0,000	1,000	-
	22,000	20	0	0,0	0,000	1,000	0,000	<0.001	0,000	1,000	-
	46,000	20	0	0,0	0,000	1,000	0,000	<0.001	0,000	1,000	-
	100,000	20	18	90,0	105,882	<0.001	60,504	<0.001	6,736	<0.001	+

+: significant; -: non-significant

A NOEC of 46,000 mg/L is suggested by the program.

Overview over the Effect-Thresholds of the Test Item on Immobility

16020502G201 / Test item: test item / Date: 13.06.2016; 10:15:38 h

ToxRatPro Version 3.2.1@ - Page 7 of 9

Cochran-Armitage	l; *bf: Fisher test proced	`s exact binon ure, significan	nial test with Bonferroni corr ce level was 0,050, one-side	ection; *casd: Step-down ed greater.
Treatm. [mg/L]	0-24 h	0-48 h		
4,600	0,0 -	0,0 -		
10,000	0,0 -	0,0 -		
22,000	0,0 -	0,0 -		
46,000	0,0 -	0,0 -		
100,000	0,0 -	90,0+		
LOEC >100	0,000 *bf10	0,000 *casd		
NOEC>=100	0,000 *bf 4	6,000 *casd		
: Significant difference to cont	rol (p <=0,050))		
Tab. 15: Summary of Results 1 rab. 15: Summary of Results 1 experimental time; observed effect co	for all En ults for all En LC: Effectiv ncentration;	dpoints dpoints: Critic e concentratic NOEC: No ob	cal effect and threshold cond on for xx% reduction; 95%-C served effect concentration	centration as observed at end of L: 95% Confidence limits; LOEC: Low
Critical Conc.s [mg/L]		0-24 h	0-48 h	
Immobility	1.040	0.000	70.007	
	LC10	0,000	/2,29/	
95%-CL	lower	0,000	n.d.	
	upper	0,000	n.d.	
	LC20	0,000	76,436	
95%-CL	lower	0,000	n.d.	
	upper	0,000	n.d.	
	LC50	0,000	85,027	
95%-CL	lower	0,000	n.d.	
	upper	0,000	n.d.	
Immobility	LOEC	>100,000	100,000	
	NOEC >	=100,000	46,000	
.d.: not determined due to mai	thematical rea	asons or inappro	priate data	
Settings Table				
Tab. 16:	ltem		Default Settings	User Settings
Tab. 16: Area			-	-
Tab. 16: Area Global				
Tab. 16: Area Global	Type of E	xposure	Concentration	Concentration
Tab. 16: Area Global	Type of E Extrapola	xposure tion of LCx	Concentration By program	Concentration By program
Tab. 16: Area Global	Type of E Extrapola Show nor	xposure tion of LCx n-significant I	Concentration By program ECx YES	Concentration By program YES
Tab. 16: Area Global	Type of E Extrapola Show nor Statistica	xposure tion of LCx n-significant I design	Concentration By program ECx YES	Concentration By program YES NOEC/ECx

Final ReportStudy No.: 16020502G201LAUS GmbHTest Item: (9Z)-9-Octadecenoic acid - N-cyclohexylcyclohexanamine (1:1)

D () ()		
Data transformation	none	ArcSine Square Root(p)
Decimals data	1	1
Statistical pre-testing		5
Extra-binomial variance	l arone test	Deselected
Additional tests	None	None
Final testing (NOEC)		
Test procedures	SD Cochran-Armitage	Bonferroni Fisher
Who selected final test	Program	Program
Additional tests	None	None
Significance level	0,05	0,05
Test direction	one-sided greater	one-sided greater
LCx computation		
Selected LCx values	LC10, LC20, LC50	LC10, LC20, LC50
Selected method	Linear Regression	Linear Regression
Regress. type	Max. Likelihood	Max. Likelihood
Dose/response function	Probit (normal sigmoid)	Probit (normal sigmoid)
Sig. level goodness of fit	0,10	0,10
Data	Treatment mean/total	Treatment totals
Confidence limits	after Fieller	after Fieller
Control mortality	Not compensated	Not compensated
	20 L	